
Event driven architectures

Joran Bergfeld
Solution Architect

Worked with computers since teenage years
From malware, to network, to software

A few months at Red Hat
Cooking, cocktails, general nerd and explorer

Just came back from Bali

Fancy a ?

Connect with me on

LET’S TALK COOKING

4

5

6

LET’S TALK EVENT SYSTEMS

8

10

11

12

TODAY IS NOT ABOUT YOU
IT’S ABOUT ALL OF YOU

MESSAGES AND EVENTS

MESSAGE

EVENT

RECAP

Message

● You receive a message (command)
● As producer, you care about the

consumer
● Exactly one consumer
● Business flows are usually more tightly

coupled

● Result of the above: Centralized
technology

Event

● You react to an event
● As producer, you don’t really care

about the consumer
● Zero to many consumers
● Business flows are usually less tightly

coupled

● Result of the above: Decentralized
technology

WHAT IS A KAFKA

PRODUCER PERSPECTIVE

IN SYNC REPLICA?

CONSUMER PERSPECTIVE

REPLAYING, FAILURES AND YOU:
IDEMPOTENCY

Idempotency & Kafka: Failure

44

● Imagine a world where the broker fails after writing the event to the log,
but before sending an ack to the producer

● The producer only can assume it has not been successful
● The producer send it again
● You’ll have two times the event on the log

Idempotency & Kafka: Leverage Kafka Transaction API

45

● Topics with a transactional producer can be leveraged.
○ Producer

■ enable.idempotency=true
■ transaction.id=some-id

○ Consumer
■ isolation.level=read_committed/read_uncomitted

Idempotency & Kafka: Leverage Kafka Transaction API

46

Idempotency & Kafka: Leverage Kafka Transaction API

47

● So why is this tricky?
○ You’re forcing consumer and producer to communicate about

enabling idempotency
○ You’re forcing consumer to think more about complexity
○ Exactly once processing works for this case, but you have to look

bigger picture. If this is triggered by a user pressing a button? What if
they press it twice?

○ Bottom line: Less flexibility, more reliability

Idempotency & Kafka: Leverage Kafka Transaction API

48

Idempotency & Kafka: DIY

49

● Considering Idempotency depends on the producer being transactional
“enabled”, and your consumer and producer are loosely coupled, you
cannot know for certain

● Use a DIY way of achieving idempotency
● Supply a message key when sending your event to Kafka. Kafka will

guarantee the ordering of the same key.
○ Key choice is vital.

DEMO

Please don’t take this as reference implementation, I am bad at coding

54

GitHub URL for project Example deployment

55

56

57

Demo: Issues

60

● Processing of PaymentUpdatedEvent is prone to duplication and
inconsistency

● Rollback of order “transaction” is not implemented
● Not in scope: Message ordering. Not really relevant here, but state engine

could encounter issues in some cases.

CONCLUSION

You can do a lot with Kafka, but know the tradeoffs.
Kafka helps when you’re looking for decentralized control.

Don’t mindlessly adopt Kafka without considering it’s implications for both consumer and producer
Be sure to match an event driven architecture with your business case

Conclusion

