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Connect with me on

Worked with computers since teenage years
From malware, to network, to software
A few months at Red Hat
Cooking, cocktails, general nerd and explorer
Just came back from Bali

Fancy a (( ?
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LET'S TALK EVENT SYSTEMS
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TODAY IS NOT ABOUT YOU
IT'S ABOUT ALL OF YOU



MESSAGES AND EVENTS
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Message Event

® You receive a message (command) e Youreact to an event
As producer, you care about the e As producer, you don't really care
consumer about the consumer
Exactly one consumer e Zero to many consumers
Business flows are usually more tightly e Business flows are usually less tightly
coupled coupled

e Result of the above: Centralized e Result of the above: Decentralized

technology technology



WHAT IS A KAFKA






PRODUCER PERSPECTIVE
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CONSUMER PERSPECTIVE
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REPLAYING, FAILURES AND YOU:
IDEMPOTENCY
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Idempotency & Kafka: Failure

Imagine a world where the broker fails after writing the event to the log,
but before sending an ack to the producer

The producer only can assume it has not been successful

The producer send it again

You'll have two times the event on the log

& RedHat
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Idempotency & Kafka: Leverage Kafka Transaction API

e Topics with a transactional producer can be leveraged.
o Producer
m enable.idempotency=true
m transaction.id=some-id
o Consumer
m isolation.level=read_committed/read_uncomitted
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Idempotency & Kafka: Leverage Kafka Transaction API

producer.initTransactions();

try {
producer.beginTransaction();
producer.send(recordl);
producer.send(record2);
producer.commitTransaction();

} catch(ProducerFencedException e) {
producer.close();

} catch(KafkaException e) {
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producer.abortTransaction();
11}

kafka-transactions.java hosted with € by GitHub view raw



Idempotency & Kafka: Leverage Kafka Transaction API

e So why is this tricky?

o You're forcing consumer and producer to communicate about
enabling idempotency
You're forcing consumer to think more about complexity
Exactly once processing works for this case, but you have to look
bigger picture. If this is triggered by a user pressing a button? What if
they press it twice?

o Bottom line: Less flexibility, more reliability
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Idempotency & Kafka: Leverage Kafka Transaction API
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Idempotency & Kafka: DIY

Considering Idempotency depends on the producer being transactional
“enabled”, and your consumer and producer are loosely coupled, you
cannot know for certain
Use a DIY way of achieving idempotency
Supply a message key when sending your event to Kafka. Kafka will
guarantee the ordering of the same key.

o Key choice is vital.

& RedHat
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DEMO

Please don't take this as reference implementation, | am bad at coding
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Payment App

& RedHat



56

Create ‘tem

SIS

/ Create Item o Po(e_t‘ APP

Request

Item Created
Event

Pw./me_n‘t App

& RedHat



57

/

Create Order
Request

Order Created
Event

Payme_n‘t App

& RedHat



Pou/mey\'t Updoct ed

Stock App

Ordler App

Pc\yme_nt folodiéﬁl
Event

Pat/men‘t App

& RedHat



Stock Upda‘t ed

Stock App

Stock Upolateol
Event

Pw/mev\t App

& RedHat



60

Demo: Issues

Processing of PaymentUpdatedEvent is prone to duplication and
inconsistency

Rollback of order “transaction” is not implemented

Not in scope: Message ordering. Not really relevant here, but state engine
could encounter issues in some cases.
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CONCLUSION



Conclusion

You can do a lot with Kafka, but know the tradeoffs.
Kafka helps when you're looking for decentralized control.
Don't mindlessly adopt Kafka without considering it's implications for both consumer and producer
Be sure to match an event driven architecture with your business case



USING KAFKA

WHY IS THIS
S0 COMPLEX
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