Event driven architectures

Joran Bergfeld
Solution Architect

\.0 RedHat

Connect with me on

Worked with computers since teenage years
From malware, to network, to software
A few months at Red Hat
Cooking, cocktails, general nerd and explorer
Just came back from Bali

Fancy a ((?

LET'S TALK COOKING

& RedHat

& RedHat

& RedHat

LET'S TALK EVENT SYSTEMS

Message Oro(eﬁng

& RedHat

Event 2

Event 1 Evends 3 Event 4

& RedHat

Exac’tly once de_hve_m/

1..1

Event

& RedHat

Atleast once Je_l?ve,n/

-

Events

At most once delive_ry

Consumer

& RedHat

TODAY IS NOT ABOUT YOU
IT'S ABOUT ALL OF YOU

MESSAGES AND EVENTS

MESSAGE

Al?ce,

eIt

Me,SSO\f,e

Bob

Alice

v

Ahce

X

Qv

B

MCS$O\<3€

From Alice

Bob

EVENT

Te_“ wme about
discounts on

this ‘Pomct/ product

Bob
Alice

This Pomct/ produc‘t

s on[c/ 1 euro now!

Alice

V

)

o

Bob

Al?ce,

RECAP

Message Event

® You receive a message (command) e Youreact to an event
As producer, you care about the e As producer, you don't really care
consumer about the consumer
Exactly one consumer e Zero to many consumers
Business flows are usually more tightly e Business flows are usually less tightly
coupled coupled

e Result of the above: Centralized e Result of the above: Decentralized

technology technology

WHAT IS A KAFKA

PRODUCER PERSPECTIVE

TR
%ﬂqut;/O

LD

R
RIS
ERRIL R

___k
Event

%
>
W

Topic

Event

o ot s

Broker #1

Broker #2

Broker #1 Broker #2
Partition
+# H#1
Leader ISR
Portition Poartition
#2 #2
Leader

INSYNC REPLICA?

CONSUMER PERSPECTIVE

Consumer

Consumer

Producer

Consumer 67r“oup

Producer

Consuwmer

Consumer

Producer

Consumer G;roup

Consumer

Consumer

Consumer 67roup

Consumer

Consumer

Consumer G;roup

Consumer
/ Consumer
Producer
Consumer 67r0uP
Consumer
W/// Consumel
)
Log Database

Producer

W\

Log Database

N
N
N

7
N\

Consumer Gamup

Consumer

Consumer

Consumer Group

Consumer

Consumer

Producer

A\

3
\

Log Database

\
.
N

Consumer Gamup

Consumer

Consumer

Consumer Glf‘oup

Consumer

Consumer

Producer

S8
)

1_03 Database

\
.
N

Consumer G;roup

Consumer

Consumer

Consumer 67roup

Consumer

Consumer

Producer

Consumer Gyrouf)

Consumer

Consumer

Consumer 67roup

)

Log Database

Consumer

Consumer

Consumer 67r~oup

Consumer

Consumer

REPLAYING, FAILURES AND YOU:
IDEMPOTENCY

44

Idempotency & Kafka: Failure

Imagine a world where the broker fails after writing the event to the log,
but before sending an ack to the producer

The producer only can assume it has not been successful

The producer send it again

You'll have two times the event on the log

& RedHat

45

Idempotency & Kafka: Leverage Kafka Transaction API

e Topics with a transactional producer can be leveraged.
o Producer
m enable.idempotency=true
m transaction.id=some-id
o Consumer
m isolation.level=read_committed/read_uncomitted

& RedHat

Idempotency & Kafka: Leverage Kafka Transaction API

producer.initTransactions();

try {
producer.beginTransaction();
producer.send(recordl);
producer.send(record2);
producer.commitTransaction();

} catch(ProducerFencedException e) {
producer.close();

} catch(KafkaException e) {

O 00 N O Ul A W N =

[
S

producer.abortTransaction();
11}

kafka-transactions.java hosted with € by GitHub view raw

Idempotency & Kafka: Leverage Kafka Transaction API

e So why is this tricky?

o You're forcing consumer and producer to communicate about
enabling idempotency
You're forcing consumer to think more about complexity
Exactly once processing works for this case, but you have to look
bigger picture. If this is triggered by a user pressing a button? What if
they press it twice?

o Bottom line: Less flexibility, more reliability

47

& RedHat

48

Idempotency & Kafka: Leverage Kafka Transaction API

& RedHat

49

Idempotency & Kafka: DIY

Considering Idempotency depends on the producer being transactional
“enabled”, and your consumer and producer are loosely coupled, you
cannot know for certain
Use a DIY way of achieving idempotency
Supply a message key when sending your event to Kafka. Kafka will
guarantee the ordering of the same key.

o Key choice is vital.

& RedHat

[.
Broker #1 Broker #2
Partition
+# H#1
Leader ISR
Portition Poartition
#2 #2
Leader & RedHat

Broker #1

Pactition
PV S
ISR

Leader

Partition
#2

Broker #2

Partition

Partition
#2
Leader

& RedHat

Me55age ket/

/ Hashing

Portition
#1

Poartition
#2

Portition
H#N

& RedHat

DEMO

Please don't take this as reference implementation, | am bad at coding

&, RedHat

55

Payment App

& RedHat

56

Create ‘tem

SIS

/ Create Item o Po(e_t‘ APP

Request

Item Created
Event

Pw./me_n‘t App

& RedHat

57

/

Create Order
Request

Order Created
Event

Payme_n‘t App

& RedHat

Pou/mey\'t Updoct ed

Stock App

Ordler App

Pc\yme_nt folodiéﬁl
Event

Pat/men‘t App

& RedHat

Stock Upda‘t ed

Stock App

Stock Upolateol
Event

Pw/mev\t App

& RedHat

60

Demo: Issues

Processing of PaymentUpdatedEvent is prone to duplication and
inconsistency

Rollback of order “transaction” is not implemented

Not in scope: Message ordering. Not really relevant here, but state engine
could encounter issues in some cases.

& RedHat

CONCLUSION

Conclusion

You can do a lot with Kafka, but know the tradeoffs.
Kafka helps when you're looking for decentralized control.
Don't mindlessly adopt Kafka without considering it's implications for both consumer and producer
Be sure to match an event driven architecture with your business case

USING KAFKA

WHY IS THIS
S0 COMPLEX

m linkedin.com/company/Red-Hat n facebook.com/RedHatinc

youtube.com/user/RedHatVideos u twittercom/RedHat

e‘ Red Hat

