
Connecting people and solutions
to accelerate your business

2

Optional section marker or title

Hybrid Cloud Development:
10 Best Practices using ARO
and ROSA

Yury Titov
Senior BlackBelt for Managed Cloud Services,

Red Hat

3

▸ former senior EMEA Architect
▸ present: senior BlackBelt for Managed Cloud Services
▸ always: open source dude

Introduction

Yury Titov

What we’ll
discuss today

▸ OpenShift, ROSA, ARO: application platforms?

▸ Data: K8S is boring? Unique Value for the Hybrid Cloud

▸ Do not build CI/CD pipelines: Supply Chain Levels for
Software Artifacts

▸ OpenShift is not an island: dev lifecycle with AWS/Azure
Managed Services

▸ Microservices "patterns" using infrastructure?

Agenda

4

What we’ll
discuss today

▸ Serverless, but across clouds?

▸ API Management vs. Service Mesh

▸ Shift left in practice?

▸ Mission critical apps?

▸ Where to find useful information for developers

Agenda

5

6

OpenShift, ROSA, ARO:
Application Platforms?

7Running containers on a laptop.

Running some early, simple multi-container apps

We need more servers

We need Kubernetes

We kind-of got CI/CD
integration working

Monitoring
at scale

Enterprise authentication, hybrid connectivity, audit controls

Security... software supply chain? Connectivity between services? OS?

Monitoring and observability at scale is actually quite hard

Developers are asking for better tooling, flexibility, plugins

App team #2 needs a fundamentally different stack

That ISV app isn’t certified to run on our in-house stack

Isn’t Helm supposed to be reusable? Operators?!

That business unit uses another
public cloud? They need on-prem?!

All these bits we’ve built
don’t talk with each other

I’m leaving

Cost. Risk. Revenue.

OpenShift vs
xKS?

7

Cloud Based App Dev for a Developer

8

Azure Red Hat OpenShift
Red Hat OpenShift Service on AWS

Technical Stack

Time spent delivering an application

Standalone Kubernetes

Time to value with OpenShift

Platform
(OS, Databases, Kubernetes, etc)

Infrastructure
(Compute, network, storage, etc)

Customer applications

Self-Managed OpenShift

9

10

Dashboard Kubernetes dashboard

Deployment automation

DevOps Build automation

CI/CD

Orchestration Container orchestration

Monitoring Logs/metrics

RBAC

Container registry

Infrastructure Storage

Networking

Linux container host

10

Required capabilities
fully integrated

Day 1-2 operations
simplicity to deliver
“Enterprise Container
Platform”

Manual integrations

Day 1-2 operations
complexity to deliver
“Enterprise Container
Platform”

OpenShift offers functionality fully integrated

Kubernetes services

1111

12

Azure Red Hat OpenShift is a turnkey application platform

Red Hat OpenShift developer console & CLI
enhancements to improve dev experience

CodeReady Workspaces with Eclipse Che for cloud- native
development & collaboration

Red Hat OpenShift IDE plugin integrations to meet
the developer where they are

OpenShift developer sandbox and local cluster
enhancements to improve access

Application level observability for developers
to build and manage their apps

Red Hat OpenShift Service Mesh with Istio to connect,
secure, and observe services

Red Hat OpenShift Serverless with Knative to provide hybrid
serverless, FaaS, & event-driven architectures

Red Hat OpenShift pipelines with Tekton to provide
Kubernetes-native CI/CD pipelines

Red Hat OpenShift GitOps with ArgoCD to provide declarative
GitOps based continuous delivery

Red Hat OpenShift builds with Shipwright to build images from
code using S2I + other & integrate with Github actions

Red Hat Runtimes, including Spring Boot, Quarkus, OpenJDK, JBoss
SSO, node.js, Apache Tomcat, Apache HTTP, and .NET

Linux (container host operating system)

Kubernetes (orchestration)

Kubernetes cluster services

Integrated tools and services for faster application development and delivery

12

13

OpenShifts
Unique Value for the Hybrid Cloud
from App Dev Perspective

14

Red Hat contributions extend across the CNCF ecosystem

15

Red Hat OpenShift has shipped consistently from the
earliest Kubernetes releases

16

Kubernetes Stabilizing since 2020

17

Innovation Focus on the Surrounding Areas

18

Return to the Beginning
Kubernetes Declarative State

Desired State Current State

Third Party Resource Definition Red Hat 2016
Operators CoreOS 2016

Custom Resource Definition Red Hat 2017
Red Hat Acquires CoreOS 2018

Operator SDK 2018
OpenShift 4 Released 2019

Applications
Platform

https://github.com/kubernetes/enhancements/issues/95
https://web.archive.org/web/20170129131616/https://coreos.com/blog/introducing-operators.html
https://github.com/kubernetes/enhancements/issues/95
https://www.redhat.com/en/about/press-releases/red-hat-acquire-coreos-expanding-its-kubernetes-and-containers-leadership
https://github.com/operator-framework/operator-sdk
https://www.redhat.com/en/about/press-releases/red-hat-redefines-enterprise-kubernetes-through-full-stack-automation-red-hat-openshift-4

19

Evolving Your Platform

Identity (IdM)

N
etwork

Segm
entation

Service Access

Ro
ut

in
g

&
DN

S
Di

sc
ov

er
y

Value

Auditing & O
penTracing

Logging & Observability

Storage APIs

Ce
rt

ifi
ca

tio
n

&
Co

m
pl

ia
nc

e
Code Pipelines

Software Catalogs

CI/CD

Co
nt

ai
ne

r B
ui

ld
s

Line of Business Innovation & Revenue

GC
P

Se
rv

ic
es

 &
 D

at
a/

M
an

u
Ce

nt
er

s

Inside-Out Vs Outside-In Spend More Time Here

20

OpenShift Service Mesh with Istio to connect,
secure and observe services

OpenShift Serverless with Knative to enable hybrid
Serverless, FaaS & EDA

OpenShift Pipelines with Tekton to provide
Kubernetes-Native CI/CD pipelines

CodeReady Workspaces with Eclipse Che for cloud
native development & collaboration

Building a Kubernetes Cloud Native
DevOps Services Stack

Building World Class Developer Tools &
Developer Experience in OpenShift

OpenShift GitOps with ArgoCD to enable declarative
GitOps based continuous delivery

OpenShift Developer Console & CLI
enhancements to improve dev experience

OpenShift developer sandbox and local cluster
enhancements to improve access

Observability that enables app monitoring for
developers on OpenShift

OpenShift Builds with Shipwright to build images from
code using S2I, Buildpacks, and buildah

Helm Charts for packaging and distributing
applications on OpenShift

GitHub Actions to automate container build and
deployments to OpenShift

Complete IDE plugin integrations to meet the
developer where they are

More than Kubernetes
Kubernetes is Boring (™)

21

Install and Form Factors
Pick Your Operational Stance

IPI UPI Assisted ACM-Hive HyperShift

- Most like *KS
- Carves out what it

needs
- Tries to load all

Infra Automations
- Let’s LOB get self

service

- Old school unlimited
options

- You choose Infra
automations

- Integrate ISV
solutions

- Bring your own
hosts

- Hosted Q&A
- Designed for

Appliances
- Agnostic to Infra
- ISO Driven

- Install 1,000 of
clusters

- Manage them from
gitOps

- CR/Yaml Driven
with ACM UX

- Automatically flow
into governance
and policy

- Cloud Provider
Level

- Control Plane
Pods in
Namespaces

- External to the
Cluster Resources

- Not self managed

(GA Target July 2022)

3-Node HA
Cluster

Laptop Cluster Single Node
Cluster

ROSA (AWS)

Your Pick of Kubernetes
Design:

(GA) (GA) (GA) (GA)
ARO (AWS)

(GA)

22

Focus on building applications
instead of building CI / CD systems.

 Build Service gives you an out of the box workflow designed to flex for small or large applications.

23

Easy to use

Because Build Service is a managed service, you can be up and running in minutes. Complicated product
integrations are handled for you. Upgrades are continuous and seamless.

Deliver securely-built images to a registry, deploy applications to the cloud or to your on-prem OpenShift
cluster with just a few steps.

kcp

24

Enterprise Contract

Enterprise Contract
How does is work?

Proof is provided by:

● Tekton chains is used to obtain proof of what happened in a user-defined pipeline.
● Rekor transparency log is used for serialization of TaskRun proof.
● Tekton Chains provides a mechanism to automatically upload signed payloads to a transparency log for

off-system verification.

Build Service analyzes records in in the transparency log to verify that

● a particular OCI image was produced by a valid pipeline,
● which was in turn composed of valid TaskRuns,
● which in turn were composed of valid Tasks,
● which in turn were compliant with the organization's enterprise contract.

25

Supply Chain Levels for Software Artifacts (SLSA)

Level 1"SLSA’s four levels are designed to be
incremental and actionable, and to
protect against specific integrity
attacks.

SLSA 4 represents the ideal end state,
and the lower levels represent
milestones with corresponding
integrity guarantees."

Source:
https://slsa.dev/spec/v0.1/levels

Requirement SLSA 1 SLSA 2 SLSA 3 SLSA 4
Build - Scripted build ✓ ✓ ✓ ✓

Provenance - Available ✓ ✓ ✓ ✓

Source - Version controlled ✓ ✓ ✓

Build - Build service ✓ ✓ ✓

Provenance - Authenticated ✓ ✓ ✓

Provenance - Service generated ✓ ✓ ✓

Source - Verified history ✓ ✓

Source - Retained indefinitely 18 mo. ✓

Build - Build as code ✓ ✓

Build - Ephemeral environment ✓ ✓

Build - Isolated ✓ ✓

Provenance - Non-falsifiable ✓ ✓

Source - Two-person reviewed ✓

Build - Parameterless ✓

Build - Hermetic ✓

Build - Reproducible ○
Provenance - Dependencies complete ✓

Common - Security ✓

Common - Access ✓

Common - Superusers ✓

https://slsa.dev/spec/v0.1/levels
https://slsa.dev/spec/v0.1/requirements#scripted-build
https://slsa.dev/spec/v0.1/requirements#available
https://slsa.dev/spec/v0.1/requirements#version-controlled
https://slsa.dev/spec/v0.1/requirements#build-service
https://slsa.dev/spec/v0.1/requirements#authenticated
https://slsa.dev/spec/v0.1/requirements#service-generated
https://slsa.dev/spec/v0.1/requirements#verified-history
https://slsa.dev/spec/v0.1/requirements#retained-indefinitely
https://slsa.dev/spec/v0.1/requirements#build-as-code
https://slsa.dev/spec/v0.1/requirements#ephemeral-environment
https://slsa.dev/spec/v0.1/requirements#isolated
https://slsa.dev/spec/v0.1/requirements#non-falsifiable
https://slsa.dev/spec/v0.1/requirements#two-person-reviewed
https://slsa.dev/spec/v0.1/requirements#parameterless
https://slsa.dev/spec/v0.1/requirements#hermetic
https://slsa.dev/spec/v0.1/requirements#reproducible
https://slsa.dev/spec/v0.1/requirements#dependencies-complete
https://slsa.dev/spec/v0.1/requirements#security
https://slsa.dev/spec/v0.1/requirements#access
https://slsa.dev/spec/v0.1/requirements#superusers

26

OpenShift is not an island:
use best parts of AWS and Azure

27

Microservices "patterns" using
programming language lock-in?

28

Monolithic application

29

Microservices in 2022

+ Service mesh is multitenant in
OpenShift (incl. ROSA and ARO)

Reduce complexity? Speed up
development? Polyglot
programming?

Yes, they are parts
of the platform

30

Example:

Conditional
Routing

31

Example:

Circuit
Breaker

● If found error 1 times
(consecutiveErrors)

● then eject that pod from pool for 15
mintues (baseEjectionTime)

● Maximum number of pod that can
be ejected is 100%
(maxEjectionPercent)

● Check this every 15 min (interval)

32

Api-Management VS. Service Mesh?

33

API Management vs. Service Mesh

https://itnext.io/api-management-and-service-mesh-e7f0e686090e

Whitepaper: https://www.redhat.com/en/resources/api-management-and-service-mesh-checklist

34

- Use serverless capabilities of the platform
- Code known language and style
- Make sure your function starts fast!*
- *If it is not fast rewrite to make it fast in other

language

From Microservices to Serverless

https://github.com/redhat-mw-demos/serverless-runtimes-demo

35

Serverless, but across clouds?
reduced lock-in

36

Quarkus Native CompilationNNa

Compile Provision
(curate)

Wiring &
Assemble
(augment) AOT Native

Compilation

JDK Hotspot Runnable & Image

Native Executable
& Image

app.jar Frameworks Runnable
Java app

Runnable
Native app

37

Quarkus Funqy
🤘 A portable Java API to write functions

🤘 Deployable to various FaaS environments or a standalone service

38

🤘 Async Reactive Types

🤘 Supports the Smallrye Mutiny Uni reactive type as a return type

Quarkus Funqy

39

🤘 Supports dependency injection through CDI or Spring DI

Quarkus Funqy

40

Choose a serverless platform to deploy the Funqy function

41

“Shift Left” for App Dev on Public Cloud

In a typical (and simplified) software
development process:

- requirements phase
- design/development/

DevSecOps
- testing
- deployment.

Top four areas of concern as AppDev shift toward the cloud include*:

*https://www.redhat.com/en/topics/security/devsecops/approach

Develop and Ship Governance Policies as part of your application!

42

“Shift Left” for App Dev on Public Cloud
Develop and Ship Governance Policies as part of your application!

Programmed logic for any CRD (stored in Git)!

Defining constraints
Enforcing constraints

43

More Compliance Needed?
Policy creation wizardAdditional Policy Engines and GitOps

*used rather by security specialists rather developers

44

Centralised Authorization for Enterprise Orchestra
Example cloud based app orchestra

● Need: time based access (not just role-based)?
● Second Factor Authentication?
● How to handle different Deployments?

Part of ARO and ROSA with Red Hat support

Use Authorization Services!
Do not programm authz logic,

configure it via KC API!

45

Example

Part of ARO and ROSA with Red Hat support

https://github.com/redhat-developer/redhat-sso-quickstarts/tree/7.4.x/app-authz-rest-springboot

46

Where to find useful information for
app developers?

https://developers.redhat.com/e-books

Summary
▸ ROSA, ARO are application platforms

▸ K8S is boring. Look for everything on top.

▸ Do not build CI/CD pipelines, build applications. Using
Supply Chain Levels for Software Artifacts

▸ OpenShift is not an island: dev lifecycle with AWS/Azure
Managed Services

▸ Use microservices patterns with inbuilt ARO/ROSA parts

47

▸ Serverless, but across clouds? Funqy

▸ API Management vs. Service Mesh

▸ Shift left in practice!

▸ Keycloak is part of ARO/ROSA:
Centralised Authorisation

▸ Keep learning! (with RedHat Books)

48

Microsweeper

examples for ARO and ROSA with

● ext. DynamoDB (ROSA)

● ext. Azure PostgreSQL (ARO)

Bonus

Learn. Code. Play! :D
https://github.com/redhat-mw-demos/microsweeper-quarkus/tree/ROSA

49

Thank you!

Email: ytitov@redhat.com

Yury Titov

Join Red Hat Developer.
Build here. Go anywhere.

facebook.com/RedHatDeveloperProgram

youtube.com/RedHatDevelopers

twitter.com/rhdevelopers

linkedin.com/showcase/red-hat-developer

https://www.facebook.com/RedHatDeveloperProgram
http://youtube.com/RedHatDevelopers
http://twitter.com/rhdevelopers
https://www.linkedin.com/showcase/red-hat-developer/

Start exploring in the OpenShift Sandbox.
Learn containers, Kubernetes, and OpenShift in your browser.

developers.redhat.com/developer-sandbox

Try Red Hat's products and technologies
without setup or configuration.

