
Continuous Integration and Continuous Delivery on OpenShift

GitOps from Development to Production

Johana Limka

Associate Solution Architect, Red Hat

Mark Roberts

Principal Solution Architect, Red Hat
Cloud

Foundation

Cloud
Native

Enterprise
Cloud

Progression

Objective

To create an automated build and deploy process

GitOps Principles

The system is
described

declaratively

A controller exists to
detect and act on

drift

Approved changes
can be applied
automatically

The desired state is
versioned in Git

Objective

To create an automated build and deploy process
in which the assets are stored in and managed
from a Git repository

Source content and objectives

Application
source code

Deployment
configuration assets

Running containerised
microservice

● From source content to running microservice

○ Source code of application

○ Container images (both a target and a source asset)

○ Kubernetes resources - services, configuration maps, secrets etc.

● Multiple steps to manage

○ Software build process

○ Container image creation and storage

○ Deployment of container image from storage

○ Application of Kubernetes resources

● Two major phases

○ Build - Continuous integration

○ Deploy - Continuous delivery

Container image

Source code to container image cycle - Continuous Integration

Application
source code

Build processSource code
management

Container image Container registry

Store Pull Create Push

● Store source code in a Git repository

● Pull the source code and execute a build process

○ The build definition assets are also stored in a Git repository

● Create a new container image as part of the build process

○ This process will use a source container image that may be stored in the container registry or an external registry

● Push the new container image to the container registry with a new identification tag

Webhook URLWebhook

Trigger

Base image

Container image deployment - Continuous Delivery

Deployment
configuration resources

Source code
management

Container registry

Deployment
automation

Running containerised
application

Store

Kubernetes
resources

Pull Create Deploy

● Store resource definitions in a Git repository

● Pull the resource definitions from Git

● Create Kubernetes resources based on resource definition

○ Refer to the container image in the container registry

● Deploy assets based on the desired state of Kubernetes resources

● Result : A new running application

● Two inputs that can drive change

○ Deployment configuration resources

○ Container images

OpenShift GitOps and OpenShift Pipelines

OpenShift GitOps

● Delivered as an operator on OpenShift clusters

● Based on ArgoCD open source project

● Synchronisation maintained between the Git repository and

resulting assets

● ‘Application’ definition Git repository -> Kubernetes resource

OpenShift Pipelines

● Delivered as an operator on OpenShift clusters

● Based on Tekton open source project

● Cloud native continuous integration process

● Tasks execute in isolated pods

○ Each step of a task is a specific and unique container

● Pipeline and task definitions stored in Git repository

● Kubernetes resources based on Git content managed by

OpenShift GitOps

Monitor

Detect
driftSync

Take
action

CI / CD Triggers

Application
source code

Build processSource code
management

Container image

Container registry

Push Pull Create Push

Webhook URLWebhook

Trigger

Deployment
configuration assets

Source code
management

Deployment
automation

Running containerised
application

Push

Kubernetes
resources

Pull Create Deploy

Image
Pull

Synchronisation

Update

Git pull request process

● To merge changes back to main create a pull request

○ Request that a person with appropriate permission ‘pulls’ the changes from the development branch

● Branch protection rules

○ Require the pull request is used

○ Require approvals prior to merge

○ Require status checks on commits evaluate to ‘pass’

○ etc.

main branch

development branch

Development user creates the pull request -
target is ‘main’ branch

Appropriate user
pulls the commit(s)

Branch protection rules are evaluated -
require commit status of ‘Success’

✔

Update the deployment content with new image tag

Application
source code

Build processSource code
management

Container image

Push Pull Create

Deployment
configuration assets

Source code
management

Push

Update

● New image tag identifier

● To be used in the deployment process

● Update process

○ Update the deployment asset

○ Commit to Git

● Solution ?

Kustomize

● A text replacement and resource build process

● Template file -

○ ‘Deployment time’ text replacement process

○ Text patching directives

kind: Deployment
apiVersion: apps/v1
metadata:
 name: myapp
 namespace: myapp-prod
spec:
 template:
 spec:
 containers:
 - name: myapp
 image: quay.io/<repository>/myapp-runtime

Base deployment file

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization

resources:
 - deployment.yaml
 - service.yaml
 - route.yaml
 - configmaps.yaml
images:
 - name: quay.io/<repository>/myapp-runtime
 newTag: 27e8

kind: Deployment
apiVersion: apps/v1
metadata:
 name: myapp
 namespace: myapp-prod
spec:
 template:
 spec:
 containers:
 - name: myapp
 image: quay.io/<repository>/myapp-runtime:27e8

Kustomize file

New deployment file

kustomize edit set image quay.io/<repository>/myapp-runtime:27e8

Git repository files Deployment time ‘dynamic files’

Pipeline process for development and QA

Git clone
source

Build JAR
file

Create runtime
container image

Update and commit
Kustomize file - Dev

Update and commit
Kustomize file - QA Review pull request Merge pull request

cd repository
main branch

Causes ArgoCD to trigger the
deployment of the updated resources

Causes ArgoCD to trigger the
deployment of the updated resources

● Use a simple update and deploy process for development

● Use a pull request to create a review point for QA

cd repository
qa-ready branch

Create a pull request to merge
changes to main branch

QA pipeline - Use a pull request to manage the release

Git clone
source

Build JAR
file

Create runtime
container image

Image build
check

Update and commit
Kustomize file - Dev

Update and commit Kustomize
file - QA & create a pull request

to merge changes to main branch

cd repository
qa-ready branch

Set commit status to
‘pending’

Git clone resources
(qa-ready branch)

Configure
deployment assets

Resource
deployment check

Set commit status to
‘success’

cd repository
main branch

New
commit

Causes ArgoCD to trigger the
deployment of the updated resources

Blocks the merge of the of the pull
request until resources are validated

Execute the Kustomize build process to
perform text replacements

Perform ACS resource deployment
check against policies

Image validation - gate

Resource validation - gate

Enable the pull request to merge the QA
changes from qa-ready to main branch

Pipeline in action - before resources are approved

Pull request summary with orange ‘pending’ indicator

Pull request detail showing that it cannot be merged yet

Update and commit Kustomize
file - QA & create a pull request

to merge changes to main branch

Set commit status to
‘pending’

Git clone resources
(qa-ready branch)

Configure
deployment assets

Resource
deployment check

Set commit status to
‘success’

✔
✔ ? ? ? ?

Pipeline in action - after resources have been approved

Pull request summary with green ‘success’ indicator

Pull request detail showing that it can be merged yet

Update and commit Kustomize
file - QA & create a pull request

to merge changes to main branch

Set commit status to
‘pending’

Git clone resources
(qa-ready branch)

Configure
deployment assets

Resource
deployment check

Set commit status to
‘success’

✔
✔ ✔ ✔ ✔ ✔

QA pipeline - Use a pull request to manage the release

Git clone
source

Build JAR
file

Create runtime
container image

Image build
check

Update and commit
Kustomize file - Dev

Update and commit Kustomize
file - QA & create a pull request

to merge changes to main branch

cd repository
qa-ready branch

Set commit status to
‘pending’

Git clone resources
(qa-ready branch)

Configure
deployment assets

Resource
deployment check

Set commit status to
‘success’

cd repository
main branch

New
commit

Causes ArgoCD to trigger the
deployment of the updated resources

Image validation - gate

Resource validation - gate

QA Deployment process

Extending the pipeline to production

Git clone
source

Build JAR
file

Create runtime
container image

Image build
check

Update and commit
Kustomize file - Dev

cd repository
main branch

QA Deployment process Production Deployment process

Push image to container
registry (quay)

Webhook URL

Webhook

Trigger

Trigger ArgoCD
deployment to Dev

Trigger ArgoCD
deployment to QA

Trigger ArgoCD
deployment to Production

Summary

OpenShift Pipelines delivers a cloud-native continuous integration process

OpenShift GitOps delivers a deployment automation process driven by content in Git repositories

Git provides a secure source code repository in which branch protection rules govern when content is merged to branches

Kustomize provides a controlled mechanism to update and patch Kubernetes resources for each environment

Most important : A structured and controlled process that is understood by the team

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Thank you

