
Openshift Virtualization

Containers and VMs
together

Artur Pająk

Solution Architect

RH CEE

Gartner, Assessing Kubernetes for Hybrid and
Multicloud Application Portability, June
2020.

Gartner predicts that, by 2022, more
than 75% of global organizations will
be running containerized
applications in production, which is a
significant increase from fewer than
30% in 2019.

Image source: IDC Container Forecast, 2018

Virtualization continues to dominate

Accelerate Digital Transformations

Improve Developer Productivity

Increase Operational Efficiency and Standardization

Traditional virtualization cannot support these cloud-native
applications.

Legacy VM
Environments

Cloud Native
Environments

Time

Co-existence between legacy and cloud-native

Most are
here

New and legacy apps co-existing

4

The move from Virtual Machines to Containers

VMs have been built for decades, and they

will not go away overnight.

Virtual machines

Containers solve certain use cases and will

continue to rise, but some VMs will remain.

Containers

VMs and containers will be used to build

applications, and some might even build on

both.

Applications

It is about managing both VMs and containers

The Paths to
Application
Modernization

Path #1: Virtualize -
Rehost Application
Server to OpenShift
“Lift, and shift” Java application
on App Server to JBoss or
WebSphere on OpenShift

Path #2: Containerize -
Replatform to

Containers/Kubernetes
“Lift, tinker, and shift” workloads from

WebSphere/EAP to OpenShift
containers

Path #3+: Refactor
Plus
Staged approach: individually
replace/develop application’s
services as microservices,
incorporating more advanced
capabilities into applications,
such as AI/ML and event driven
approaches

Path #3: Refactor
Staged approach: individually
replace/develop application’s
services as microservices

Path #4: Retire & Replace
A ground-up rebuild, keeping the legacy
application up-and-running, whilst a new
version of the application is developed,
leveraging a Cloud Native development
approach

The paths to
Application
Modernization

7

Containers are not virtual machines

Infrastructure

Operating System

App 1 App 3App 2

Hypervisor

Guest
OS

Guest
OS

Guest
OS

Infrastructure

Virtualization Containerization

App 1 App 3App 2

● Containers are process isolation

● Kernel namespaces provide isolation and

cgroups provide resource controls

● No hypervisor needed for containers

● Contain only binaries, libraries, and tools

which are needed by the application

● Ephemeral

● A KVM virtual machine is a process
● Containers encapsulate processes
● Both have the same underlying

resource needs:
○ Compute
○ Network
○ (sometimes) Storage

Virtual machines can be put into containers

OpenShift Virtualization

How to install?

VMs in a container
world

● Provides a way to transition application components
which can’t be directly containerized into a Kubernetes
system
○ Integrates directly into existing k8s clusters
○ Follows Kubernetes paradigms:

■ Container Networking Interface (CNI)
■ Container Storage Interface (CSI)
■ Custom Resource Definitions (CRD, CR)

● Schedule, connect, and consume VM resources as
container-native

RHEL CoreOS

OpenShift

Physical Machine

VM pod App pod

Virtual machines in a container world

● Operators are a Kubernetes-native way to introduce
new capabilities

● New CustomResourceDefinitions (CRDs) for native
VM integration, for example:
○ VirtualMachine

○ VirtualMachineInstance

○ VirtualMachineInstanceMigration

○ VirtualMachineSnapshot

○ DataVolume

Virtualization native to Kubernetes

Kubernetes resources
● Every VM runs in a launcher pod. The launcher process will

supervise, using libvirt, and provide pod integration.

Red Hat Enterprise Linux
● libvirt and qemu from RHEL are mature, have high

performance, provide stable abstractions, and have a
minimal overhead.

Security - Defense in depth
● Immutable RHCOS by default, SELinux MCS, plus KVM

isolation - inherited from the Red Hat Portfolio stack

Storage

Network

CPU

Memory

Device

Contenerized virtual machines

kubelet

(DaemonSet) Pod

virt-handler

Cluster Services Nodes

VM Pod

virt-launcher

Other Pod(s)

container 1

libvirtd container 2

VM container n

API Server

virt-controller

Architectural Overview

● Virtual machines connected to pod networks
are accessible using standard Kubernetes
methods:
○ Service
○ Route
○ Ingress

● Network policies apply to VM pods the same
as application pods

● VM-to-pod, and vice-versa, communication
happens over SDN or ingress depending on
network connectivity

Using VMs and containers together

Managed VM with
OpenShift

● Create, modify, and destroy virtual
machines, and their resources, using
the OpenShift web interface or CLI

● Use the virtctl command to
simplify virtual machine interaction
from the CLI

Virtual Machine Management

● Streamlined and simplified creation via the GUI or
create VMs programmatically using YAML

● Full configuration options for compute, network, and
storage resources
○ Clone VMs from templates or import disks using

DataVolumes
○ Pre-defined and customizable presets for

CPU/RAM allocations
○ Workload profile to tune KVM for expected

behavior
● Import VMs from VMware vSphere or Red Hat

Virtualization

Virtual Machine creation

● Simplified and streamlined virtual machine
creation experience for VM consumers

● Administrators configure templates with an OS
disk, consumers select from the options

Using templates for virtual machines

● In addition to unique names, each template is
associated with a provider
○ Providers represent who created the

template, with optional support
information

● The guest operating system and source boot
disk are provided. A boot disk can be imported
during the process, or an ISO can be used to
boot and install the OS

● A default flavor, representing CPU and memory
allotments, is assigned

● Workload type determines optimizations to
balance between performance and efficiency

Create a template - General

● Pod, service, and machine network are configured
by OpenShift automatically
○ Use kernel parameters (dracut) for

configuration at install - bond0 in the example
to the right

● Use kubernetes-nmstate, via the NMstate
Operator, to configure additional host network
interfaces
○ bond1 and br1 in the example to the right

● VM pods connect to one or more networks
simultaneously

The following slides show an example of how this
setup is configured NodeNIC NIC

br0 br1
Service N

et

NIC

bond0

Pod N
et

NIC

bond1

SDN
Multus

Machine Net

Example host network configuration

24

● NodeNetworkConfiguration-
Policy (NNCP)
○ Nmstate operator CRD
○ Configure host network

using declarative
language

● Applies to all nodes specified
in the nodeSelector,
including newly added nodes
automatically

● Update or add new NNCPs
for additional host configs

NodeNIC NIC

br0 br1

Service N
et

NIC

bond0

Pod N
et

NIC

bond1

SDN
Multus

Machine Net

Host bond configuration

25

● Multus uses CNI network definitions in the
NetworkAttachmentDefinition to allow access
○ net-attach-def are namespaced
○ Pods cannot connect to a net-attach-def

in a different namespace
● cnv-bridge and cnv-tuning types are used to

enable VM specific functions
○ MAC address customization
○ MTU and promiscuous mode
○ sysctls, if needed

● Pod connections are defined using an annotation
○ Pods can have many connections to many

networks

Connecting Pods to networks

● Add or edit network adapters
● One or more network connections

○ Pod network for the default SDN
○ Additional multus-based interfaces

for specific connectivity
● Multiple NIC models for guest OS

compatibility or paravirtualized
performance with VirtIO

● Masquerade, bridge, or SR-IOV
connection types

● MAC address customization if desired

Create a template - Networks

● OpenShift Virtualization uses the Kubernetes
PersistentVolume (PV) paradigm

● PVs can be backed by
○ In-tree iSCSI, NFS, etc.
○ CSI drivers
○ Local storage using host path provisioner
○ OpenShift Container Storage

● Use dynamically or statically provisioned PVs
● RWX is required for live migration
● Disks are attached using VirtIO or SCSI controllers

○ Connection order specified in the VM definition
● Boot order customized via VM definition

Virtual Machine Storage

● VM disks can be imported from multiple sources using
DataVolumes, e.g. an HTTP(S) or S3 URL for a QCOW2 or
raw disk image, optionally compressed

● VM disks can be cloned / copied from existing PVCs
● DataVolumes are created as distinct objects or as a part of

the VM definition as a dataVolumeTemplate
● DataVolumes use the ContainerizedDataImporter to

connect, download, and prepare the disk image
● DataVolumes create PVCs based on defaults defined in

the kubevirt-storage-class-defaults ConfigMap or
according to the profile (as of version 4.8)

DataVolumes

Data source

CDI
Controller

PVC

PV

VM 1. The user creates a virtual
machine with a DataVolume

2. The StorageClass is used to
satisfy the PVC request

3. The CDI controller creates an
importer pod, which mounts
the PVC and retrieves the
disk image. The image could
be sourced from S3, HTTP, or
other accessible locations

4. After completing the import,
the import pod is destroyed
and the PVC is available for
the VM

Re
qu

es
ts

Import Pod

Write
s

Creates

1

2

3

4

Contenerized Data Importer

● Add or edit persistent storage
● Disks can be sourced from

○ Imported QCOW2 or raw images
○ New or existing PVCs
○ Clone existing PVCs

● Use SATA/SCSI interface for compatibility
or VirtIO for paravirtual performance

● For new or cloned disks, select from
available storage classes
○ Customize volume and access mode as

needed
○ RWX PVCs are required for live

migration

Create a template - Storage

● Virtual machines connected to pod networks
are accessible using standard Kubernetes
methods:
○ Service
○ Route
○ Ingress

● Network policies apply to VM pods the same
as application pods

● VM-to-pod, and vice-versa, communication
happens over SDN or ingress depending on
network connectivity

Using VMs and containers together

● General overview about the virtual machine
● Information populated from guest when

integrations are available
○ IP address, etc.

● Inventory quickly shows configured hardware
with access to view/manage

● Utilization reporting for CPU, RAM, disk, and
network

● Events related to the Pod, scheduling, and
resources are displayed

Virtual Machine - Overview

● Actions menu allows quick access to
common VM tasks
○ Start/stop/restart
○ Live migration
○ Clone
○ Edit application group, labels, and

annotations
○ Delete

● Accessible from all tabs of VM details
screen and the VM list

Virtual Machine - Actions

● Browser-based access to the serial and
graphical console of the virtual machine

● Access the console using native OS tools,
e.g. virt-viewer, using the virtctl CLI
command
○ virtctl console vmname

○ virtctl vnc vmname

Virtual Machine - Console

● Virtual machine, and VM pod, metrics are collected
by the OpenShift metrics service
○ Available under the kubevirt namespace in

Prometheus
● Available per-VM metrics include

○ Active memory
○ Active CPU time
○ Network in/out errors, packets, and bytes
○ Storage R/W IOPS, latency, and throughput

● VM metrics are for VMs, not for VM pods
○ Management overhead not included in output
○ Look at virt-launcher pod metrics for

● No preexisting Grafana dashboards

Detailed Virtual Machine metrics

VM migration

Migration Analytics
Detect potential compatibility issues before
migrating to ensure a successful migration

Mass Migration of VMs
Migrate workloads at scale to OpenShift
● Provide source and destination credentials
● Map infrastructure
● Create migration plans

Migration Toolkit for Virtualization (MTV)

Migration Analytics
Detect potential compatibility issues before
migrating to ensure a successful migration

Mass Migration of VMs
Migrate workloads at scale to OpenShift
● Provide source and destination credentials
● Map infrastructure
● Create migration plans

Migration Toolkit for Virtualization (MTV)

How to install?

OpenShift Virtualization
conditions

● VM nodes should be physical with CPU virtualization technology
enabled in the BIOS
○ Nested virtualization works, but is not supported
○ Emulation works, but is not supported (and is extremely slow)

Supported configuration

Summary

MigrationPresent

OCP Ready Apps

CNV Ready Apps

Other Apps

RHV Ready Apps

Container Apps

RHV Apps

Container Apps on
OCP

Containerized KVM on
OCP

 Virtualization Virtualization + Bare Metal Bare Metal

containerization

containerizationCNV Migration

RHV Migration

OpenShift
(OCP)

OpenShift
Virt (CNV)

Virtualization

RHV
(RH Virt)

CNV Migration

Re
d

H
at

 O
pe

nS
hi

ft
 /

 K
ub

er
ne

te
s

/
Q

ua
y

/
St

ac
kR

ox
 /

 U
nl

im
ite

d
R

H
EL

 /
 S

at
el

lit
e

/
A

ns
ib

le

/
C

on
ta

in
er

 N
at

iv
e

St
or

ag
e

containerization

OCP- Openshift Container Platform/CNV - Container Native Virtualization/RHV - Red Hat Virtualization

cost
agility

Legacy workloads

TargetModernization

Apps: Software Infrastructure landscape

