
An Ansible approach

Automation at the edge

Hendrik van Niekerk
Senior Solution Architect - Edge team
Red Hat

What is the edge?

Images: unsplash.com, Moises Rivera

5

Introducing Red Hat Device Edge

Combines Kubernetes * + Red Hat Enterprise Linux
Address the needs of small devices at the farthest edge

* Kubernetes is optional, you can use just OStree or RPM RHEL with Device Edge if you don’t need a Kubernetes API

The feature-rich vs small-footprint trade off

6

Serverless
VMs

MicroServices
Automated Ops

Image: Intel NUC 11 Compute Element CM11EBv716W (intel.com)

The right balance between functionality and hardware footprint

Event Driven

7

 RH Device Edge is just RHEL
(...delivered in slightly “different way")

8

What is Red Hat Device Edge? (explained with a metaphor)

Image by parblusa (pixabay.com)

9

What is Red Hat Device Edge? (explained with a metaphor)

Image by parblusa (pixabay.com)

Your longtime best friend

10

What is Red Hat Device Edge? (explained with a metaphor)

Image from Wikimedia Commons

11

What is Red Hat Device Edge? (explained with a metaphor)

Image from Wikimedia Commons

Agile, powerful, feature rich…

12

What is Red Hat Device Edge? (explained with a metaphor)

Image by HAP/Quirky China News

13

What is Red Hat Device Edge? (explained with a metaphor)

Image by HAP/Quirky China News

14

What is Red Hat Device Edge? (explained with a metaphor)

Image by HAP/Quirky China News

“for Edge”

With a little bit of
OpenShift

15

When using Red Hat Device Edge?

What is a “field-deployed device”?

Server in controlled environment

▸ server-standard board

▸ extensible (CPU, RAM, accelerators, NICs,…)

▸ out-of-band manageable (via BMC and mgmt.

network), i.e. remotely recoverable

▸ installed on site via installation medium

▸ option to boot via USB/ISO, PXE

▸ physical access controls in place

▸ uplink network is mostly available, high bandwidth, low

latency, cheap, ...

Field-deployed device

▸ single board computer, system on chip, etc.

▸ limited to few, resource-limited HW configs

▸ not out-of-band manageable, i.e. not remotely

recoverable

▸ mass-imaged centrally, “plug&walk” provisioning

(via FIDO Device Onboard)

▸ no option to boot via USB/ISO, PXE

▸ no physical access control

▸ uplink network may be disconnected, rarely available,

firewalled/NATed, slow, costly, ...

What are some of the differences?

System layout

Booting and updates

Users

Package manager

16

System layout:

Introducing OSTree

18

Who manage the OS updates/deployments?

OSTree is a transactional file system
manager for Linux-based operating systems

19

System layout change summary

/var is shared between
deployments, /etc is individual

(copied) and /usr is part of
the deployment

R/W symbolic links to /var
chroot directory from /sysroot

/usr read-only

20

What’s the benefit of these changes?

Easier reproducibility Better isolation between pre
and post change system state

Better system consistency
across multiple devices

What about updates, and
making sure they don’t
break the system?

Let’s start with the update process

Rev a2

Data and apps

Rev a1 Rev a2

Update

Data and apps

Rev a1

1. Pull in a new file system
● Upgrade knows nothing about packages or Apps
● It replaces the complete file system

2. Store the new file system
● Stores many filesystem and checks one out to be the root
● Keeps track of what’s been checked in

3. Deploy the new file system
● Checks out one of the file systems stored to be the root
● Checks out by creating hard links

22

OSTree and APPs lifecycle demo steps: https://github.com/luisarizmendi/edge-demos/blob/main/demos/upgrade-and-rollback/README.md

https://github.com/luisarizmendi/edge-demos/blob/main/demos/upgrade-and-rollback/README.md

23

Things to bear in mind about OSTree

Update only the differences

● Limit network Bandwidth usage

● Reduce install/offline time

● No file duplicates on deployments

First copy, then update:

● Resiliency on updates (ie. power)

● Stored in RAM before merged
(need enough RAM for large files) (!)

● Filesystem corruption = no update (!)
 (It’s rare and dual partition solves it)

● Each deployment has its own /etc

OSTree VS VM templating

● Not best friends

● OSTree for baremetal systems or VM
in-place updates

24

Operating System automatic updates

OSTree can automate upgrades

Three different modes
“Check”: Auto. show available updates
“Stage”: Auto. download updates
“None”: disabled

Reboot is not automatic
(by default...you could change it)

Daily checks for updates
Can be customized

Update can be automatic on new versions

Someone broke
the latest version,
what now?

a2

26

Additional safeguard for application and OS compatibility

Custom healthchecks to determine if nodes are
working properly

• Healthchecks are run during the boot process.

• If checks fail, a counter will track the number of attempts.

• In a failure state, the node will use rpm-ostree to rollback the update.

Data and apps

a1 a2

Update

Data and apps

a1

a1 a2 a1 a2

Intelligent rollbacks: Greenboot

27

Greenboot directory structure

● /etc/greenboot/check/required.d
Health checks* that must not fail

● /etc/greenboot/check/wanted.d

Health checks* that may fail

● /etc/greenboot/green.d

Scripts to be run after successful boot

● /etc/greenboot/red.d

Scripts to be run after failed boot (3 attempts to boot in case of failure, 3 times it will be executed)

* Health checks can be done with Systemd services instead of Shell scripts

28

Boot and updates change summary

GIT principles: updates
differences only, possible

multiple branches

Updates can be rollback
after completion or

cancelled at any time

Deployment chroot
bind at boot time

29

What’s the benefit of these changes?

Updates minimize bandwidth
consumption

Automatic self-healing
capability that minimize

system failures on updates

Git-like based system updates
improve tracking and

recovery times

How could this
look in reality?

A practical example

31

Architecture of RHDE-AAP lab - https://github.com/luisarizmendi/rhde-aap-gitops-demo?tab=readme-ov-file

Let’s start by
looking at the
build

The System update

New image ready in Repo: Trigger
deployment2

Device running with application4

Pipelines/image builder
creates a new image

33
Initiate an event: New system
blueprint in Gitea1

OSTree upgrades to new layer

3 successive fails: Trigger
rollback on repo3 Greendboot

health checkOSTree layer reverts

*Can also be a poll action
from device when connection
is questionable

The build job

34

The onboarding process

New device ready: Ansible has applied
credentials, hostname, etc.2

Device running with application3

Event-Driven
Ansible

35

Initiate an event: New device
phones home1

Event-Driven Ansible:
Configuration listener

Gitea: Application Configuration

Ansible - Deploy application/
publish new device image

36

Device Onboarding

Device configuration

MicroShift

38

 MicroShift bits is an optional component
 of Red Hat Device Edge

Enabling Kubernetes workloads

39

MicroShift architecture (RPM-based, embedded in rpm-ostree)

rpm-ostree image
MicroShift
binary

systemd

etcd kube-
api

kube-
cm

openshift-
api

openshift-
cm kubelet

MicroShift
State

offline
images

offline
manifests

CRI-O

file system:
starts, stops

openshift-router pod

openshift-dns pod

service-ca pod

storage provider pod

add-on
component
manifests

Optional add-on components:

OS (kernel, user-space, greenboot, …)

40

Enabled APIs

Standard kubernetes APIs
route.openshift.io/v1

security.openshift.io/v1

The Application update

Application running 4

GitOps/ArgoCD/Ansible
build and publish new images

41 Initiate an event: Application
definition changed in Gitea1

Microshift/podman new
deployment

3 successive fails: Trigger
rollback on repo3 Greendboot

health checkRevert application

Images stored in repo:
Deployable application images
ready to be rolled out

2

42

Argo CD for declarative GitOps continuous delivery

OpenShift GitOps

Microshift
(edge device)

PR Merged
OpenShift
(public cloud)

Kubernetes

webhook

poll

sync

hooks

➤ Configurations versioned in Git

➤ Automatically syncs configuration from Git

➤ Drift detection, visualization and correction

➤ Granular control over sync order

➤ Rollback and rollforward to any Git commit

➤ Manifest templating support (Helm, Kustomize,
etc)

➤ Visual insight into sync status

References:
● Try this setup yourself: https://github.com/luisarizmendi/rhde-aap-gitops-demo

https://github.com/luisarizmendi/rhde-aap-gitops-demo

Your automation journey with Red Hat Services

Proof of Value

Automation with Red Hat Services

A customized approach that meets your needs where you are

Foundation

Build your roadmap
Expand

Automate at scale
Evolve

Choose a foundational use case and automate
an initial set of workflows to provide meaningful
impact for the business and IT.

Use Red Hat as a trusted advisor as you expand
automation and establish an adoption core
team.

Build adoption core teams dedicated to your
organization's continual optimization and
growth of automation practices.

Set the stage to upskill your
teams on new technology.

Certify your teams and prepare
them for automation operations
and production readiness.

Develop teams to scale your
platform with advanced
automation training.

Customer & Partner Collaboration

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Thank you

Edge hardware vendors as partners

And many more on:
https://catalog.redhat.com/

https://catalog.redhat.com/

