
Andrzej Kowalczyk

Messaging czy Streaming?

Event
Driven
Architecture

Introduction:
Events

What is Event-Driven Architecture?

4

Event-Driven Architecture
(EDA) is a way of designing
applications and services to
respond to real-time information
based on the sending and
receiving of event notifications

EVENT-DRIVEN ARCHITECTURE

Source: https://www.gartner.com/en/information-technology/glossary/eda-event-driven-architecture :

Image: ActiveMQ in Action https://www.manning.com/books/activemq-in-action

https://www.gartner.com/en/information-technology/glossary/eda-event-driven-architecture
https://www.manning.com/books/activemq-in-action

Why Event-Driven Architecture or EDA?

EVENT-DRIVEN ARCHITECTURE

5 Source:https://developers.redhat.com/topics/event-driven/

Mirrors the real world
The real world is event-driven. Systems generate and

respond to events in everyday life, e.g., the human

central nervous system.

Reduced coupling
Traditional RPC-style service architecture results in

tightly-bound services. Changes to the application flow

typically require service code changes. EDA allows new

functionality to be added by adding services that

consume existing event streams.

Encapsulation
Microservices concepts have grown in popularity due to

the ability for service teams to develop services in

isolation. EDA means that service designers need not be

aware of how events are consumed.

Fine-grained scaling
Services can be independently scaled up and down to

meet the event volume.

Near real-time latency
Customers increasingly expect a near real-time

experience. Polling on APIs is a delicate trade-off

between responsiveness and load. EDA allow apps to

react in near real-time without compromise.

https://developers.redhat.com/topics/event-driven/

What is an event?

6 Image: https://foto.wuestenigel.com/hand-ready-to-push-domino-pieces/

Event an action or occurrence
recognized by software, often
originating asynchronously
from the external
environment, that may be
handled by the software

EVENT-DRIVEN ARCHITECTURE

https://foto.wuestenigel.com/hand-ready-to-push-domino-pieces/

What is an event?

7

Source: https://developers.redhat.com/topics/event-driven/

Async form of Remote Procedure

Call, contains instructions telling

recipient what to do, may cause a

change of state.

QueryCommand

Similar to commands, queries

expect a response returning the

results, but do not cause any

change in state.

Event

Immutable state and value of a

particular entity, which occurred

during operation among services.

EVENT-DRIVEN ARCHITECTURE

https://developers.redhat.com/topics/event-driven/

Types of event consumption patterns

8

Source: https://developers.redhat.com/topics/event-driven/

Events stored durably until read by

all registered consumers.

Traditional store-and-forward

brokers.

ReplayableDurable

Events stored durably for specific

period of time or storage capacity.

Consumers can move back and

forth of the stream.

Volatile

The event needs to be

disseminated to all consumers

online at time of publication. Not

persisted.

EVENT-DRIVEN ARCHITECTURE

https://developers.redhat.com/topics/event-driven/

Source: https://developers.redhat.com/topics/event-driven

How to choose the right implementation?

9

EVENT-DRIVEN ARCHITECTURE

EXAMPLES BEST FIT
PATTERNS

POSSIBLE
PATTERNS UNSUITABLE PATTERNS

Traditional messaging broker w/ Queuing & Pub/Sub
Rich feature set inc. JMS 2.0
Message Brokers like Apache ActiveMQ Artemis

DURABLE EVENTS

VOLATILE
EVENTS
COMMAND
QUERY

REPLAYABLE EVENTS

Message router
1:1 (anycast) and 1:many (multicast)
Secure messaging backbone for hybrid cloud
Message Routers like Apache Qpid Dispatch Router

COMMAND
QUERY
VOLATILE EVENTS

DURABLE EVENTS
REPLAYABLE EVENTS

Enterprise distribution of Apache Kafka
Simplified deployment on Kubernetes/OpenShift
Like Kafka on Kubernetes based on Strimzi

REPLAYABLE
EVENTS
DURABLE EVENTS

COMMAND
QUERY

VOLATILE EVENTS
TRANSACTED/FILTERED
EVENTS

https://developers.redhat.com/topics/event-driven

Event-driven
Microservices

11

Source:

EVENT-DRIVEN ARCHITECTURE

● High availability: No dependency on other services
● Autonomy in services with independent evolution

Microservices Async Communication
Foundation for event-driven microservices

Event-driven architecture use cases

12

Streaming between data centers

Reactive notification

Command query

responsibility segregation

(CQRS)

Auditing

Behavior capture
Cache store

Complex event

processing

Source:

EVENT-DRIVEN ARCHITECTURE

Request-reply & Event-driven

13

Source:

EVENT-DRIVEN ARCHITECTURE

Synchronous & ephemeral
Low composability
Simplified model

Low tolerance to failure
Best practices evolved as REST

Asynchronous and persistent
Decoupled

Highly composable
Complex model

High tolerance to failure
Best practices are still evolving

 EVENT-DRIVEN ARCHITECTURE

Connect loosely-coupled microservices

14

Remain agile with event-centric microservice architecture

Connect microservices and stay agile

▸ Publish events to Kafka brokers and
decouple the data from the
event-consuming services

▸ Meet event volumes by independently
scaling up and down your microservices

▸ Avoid hard-coding integrations and
connections between microservices
applications

Event Streaming

▸ Long-term persistence, semantic partitioning,
large publisher/subscriber imbalances, replay and
late-coming subscribers

▸ Shared nothing data storage model
▸ Repeatable ordering at scale

Trade-offs

▸ No out of order acknowledge, weak support for
request-response

▸ Larger data footprint and extremely fast storage
access

▸ High initial entry cost

Messaging

▸ Store-and-forward
▸ Individual message exchanges (transactions,

acknowledgment, error handling/DLQs),
P2P/competing consumer support

▸ Publish-subscribe support

Trade-offs

▸ No replay support
▸ Requires fast and/or highly available storage

infrastructure
▸ No ordering at scale

15

EVENT-DRIVEN ARCHITECTURE

Comparing Traditional Messaging and Event Streaming

Source

APAC

Microservices Lines of
Business

Apps

Regions

System and data-centric

Events are designed to respond to
ad-hoc connectivity needs

Event-centric

Events are first class citizens that describe
the interactions in the enterprise

Events

Events

Events
Microservices

Apps
LOBs

Regions

16

Thinking about event-driven architecture

EVENT-DRIVEN ARCHITECTURE

Source

Events

Event Stream
Processing

Use Cases and Applications

EVENT-DRIVEN ARCHITECTURE

18

Rebuild user activity tracking
pipeline as a set of real-time

publish-subscribe feeds.

Web Site Activity Tracker
Aggregation of statistics from

distributed applications to produce
centralized feeds of operational data.

Metrics
 Centralized collection of log files in a

highly-available store, enabling real-time
streaming access to log activity.

Log Aggregation

Stream Processing
Enables continuous, real-time
applications built to react to,

process, or transform streams.

Captures streams of events or data
changes and feeds these to other

data systems.

Data Integration

Source: https://kafka.apache.org/uses

https://kafka.apache.org/uses

19

Source:

EVENT-DRIVEN ARCHITECTURE

● Stateless and Stateful processing
● Reading data from multiple streams

Streaming Data Processing
Data processing from replayable streams

What is Apache Kafka?

20

Apache Kafka is a distributed system

designed for streams. It is built to be an

horizontally-scalable, fault-tolerant,

commit log, and allows distributed data

streams and stream processing

applications.

EVENT-DRIVEN ARCHITECTURE

Source

Apache Kafka ecosystem

21

● Kafka Core

○ Broker

○ Producer API, Consumer API, Admin API

○ Management tools

● Kafka Connect

● Kafka Streams API

● Mirror Maker / Mirror Maker 2

● REST Proxy for bridging HTTP and Kafka

● Schema Registry
Streams

API

Producer
API

Consumer
API

3rd party
tools

Mirror
Maker

Connect

EVENT-DRIVEN ARCHITECTURE

Source

Kafka Connect + Kafka Streams API

22

Other
System

Other
Systems

Kafka

Application

Topic

Topic

Processing Processing

Topic

Topic

Topic

Topic

Streams API

Kafka Connect Kafka Connect

Source
Connector

Sink
Connector

EVENT-DRIVEN ARCHITECTURE

Source

Event Management Bus

23

APACHE KAFKA CONNECTIVITY

Source

Kafka Streams
API

Event-driven
APIs

Reactive
Applications

(Quarkus)

Real Time
Decisioning

(DM)

Kafka Connect

Application
Connectivity

Data Integration

Event Persistent
Storage

Application
Connectivity

Data Integration

Kafka Connect +
Change Data

Capture (Debezium)

Source
Systems

Storage /
Database

Events

Reactive Applications
(Quarkus)

Producer API Consumer API

Service Registry

EVENT-DRIVEN ARCHITECTURE

Service Registry

25

Use Cases

Source:
https://github.com/Apicurio/apicurio-registry

API specification registry for API

consumers.

Shared Data TypesAPI Designs

Shared data types (schemas)

across API and Event driven

architectures.

Schema Registry

Schema registry for Kafka

serializers/deserializers.

https://github.com/Apicurio/apicurio-registry

Available for different

solutions like Events

(Kafka), API management

(3scale) and EIPs (Fuse)

EVENT-DRIVEN ARCHITECTURE

Service Registry

26

Targeted Requirements for Enterprise Registry

Source:
https://github.com/Apicurio/apicurio-registry

Flexibility

Provide Lifecycle

Management, Monitoring

& Metrics, Operators,

Pluggable Storage,

validations.

Enterprise Ready

Target usage for

OpenAPI, Async API,

REST CRUD, UI, Search

API Usage

Support different

artifacts: Avro, Protobuf,

JSONSchema, OpenAPI,

AsyncAPI, among others

Inclusive Artifacts

https://github.com/Apicurio/apicurio-registry

Service Registry Key Features

EVENT-DRIVEN ARCHITECTURE

27

Publish, discover and reuse artifacts using a registry service

Artifact management - reusable artifacts
are documented, and made available for
browsing and downloading.

Version control with compatibility
validation - APIs and schemas are checked
for validity and compatibility before
updates are allowed.

Schema validation - Schemas are checked
for valid content, syntax and semantics
when published to the registry.

Support for multiple schema formats -
Apache Avro, JSON schema, Protobuf,
OpenAPI, AsyncAPI, GraphQL, WSDL &
XSD.

Compatibility with CNCF and schema
registry APIs - compatibility layers are
exposed easier application integration and
recognition.

Also Available as a service, managed by
Red Hat SRE - 24x7 premium support and
fully managed highly-available (multi-AZ)
infrastructure and daily operations.

EVENT-DRIVEN ARCHITECTURE

Service Registry for your Kafka Topics

28

Map your Kafka topics to the appropriate schemas

Decoupling

Improve application efficiency and

reduce costs by decoupling the

schema from client applications.

Governance and centralization

Increased service reuse by

providing a source of truth for all

schemas.

Discoverability

Increase visibility over the schema

catalog for serialization/deserialization

and compatibility.

Apache Kafka schema management with service registry

EVENT-DRIVEN ARCHITECTURE

29

Source:

Producer Consumer

DeserializerSerializer

Service
Registry

 | | | | | | |

 | | | | | | | |

 | | | | | |

Apache Kafka

Get or
Register
Schema
by Id

Retrieve
Schema
by Id

Topic B
(JSON)

Topic C
(Protobuf)

Topic A
(Avro)

Send
Serialized
Data

Retrieve
Serialized

Data

EVENT-DRIVEN ARCHITECTURE

Service Registry for your APIs

30

Enable teams to set API standards and support partners on API discoverability and usability

▸ Governance - increased service reuse by
becoming the source of truth for Open API
specifications.

▸ Discoverability - increase visibility over
the API library ensuring reusability and
compatibility.

Service Registry

Developer CI pipeline

EVENT-DRIVEN ARCHITECTURE

Rules for content validation and version compatibility

31

Govern how your registry content evolves over time

The goal of rules is to prevent invalid content
from being added to the registry.

▸ Rules can be configured in service registry
for each artifact.

▸ Each rule has a name and configuration
information.

▸ The registry maintains the list of rules for
each artifact and the list of global rules

▸ Rules are enforced when new artifacts are
added to the registry.

Rules can check on:

▸ Invalid syntax for a given artifact type (for
example, AVRO or PROTOBUF)

▸ Valid syntax, but semantics violate a
specification

▸ Incompatibility, when new content includes
breaking changes relative to the current
artifact version

Validation Rules

▸ Artifact must have valid content or server will

reject it

▸ Can check for valid syntax

▸ Can also check for valid semantics (for some

artifact types)

EVENT-DRIVEN ARCHITECTURE

Service Registry

32

Source:
https://github.com/Apicurio/apicurio-registry

Compatibility Rules

▸ Determines whether an update is allowed based

on configured compatibility requirement setting.

▸ Multiple compatibility options including

Backwards and Forwards compatible

▸ Only relevant for updates (checks the new

version against the previous version)

▸ Controls the evolution of a single Artifact over

time

Registry Rules

https://github.com/Apicurio/apicurio-registry

Red Hat AMQ

Event and Message based Integration

34

EVENT-DRIVEN ARCHITECTURE

Source

Event notification

Enterprise messaging

Modern, scale-out
architecture

Support microservice applications

Bridge to legacy systems

Enable large scale solutions

Overview

35

EVENT-DRIVEN ARCHITECTURE

Source

Broker
High-performance messaging

implementation based on
ActiveMQ Artemis

Interconnect
Message router to build large-scale

messaging networks using the
AMQP protocol to create a
redundant application-level

messaging network

Streams
Streams simplifies the deployment,

configuration, management and
use of Apache Kafka on OpenShift

using the Operator concept

Overview

36

EVENT-DRIVEN ARCHITECTURE

Source

AMQ Broker on
OpenShift

AMQ Interconnect
on OpenShift

AMQ Streams on
OpenShift

AMQ Broker AMQ Interconnect AMQ Streams

AMQ Broker Overview

EVENT-DRIVEN ARCHITECTURE

37 Source

▸ Full-featured, message-oriented middleware broker

･ Pure Java, high-performance message broker

･ Flexible persistence: high-performance journal or JDBC

･ High availability: shared SAN or shared-nothing replication

･ Flexible clustering

▸ Specialized queueing behaviors, message persistence,

and manageability

▸ Multiple protocols and client languages are supported

･ Including AMQP 1.0, MQTT, STOMP, OpenWire, HornetQ

･ Java JMS, C++, .NET, Python, Javascript, NodeJS Clients

Artemis

AMQ Interconnect Overview

EVENT-DRIVEN ARCHITECTURE

38 Source

▸ AMQP-native message router

▸ Network offers shortest-path routing with redundancy

▸ Can be used standalone or in conjunction with broker

▸ Influenced by Red Hat MRG Messaging use cases

▸ 1-to-1 or 1-to-many

▸ Supports high performance direct messaging

▸ Only available on RHEL or OpenShift

Dispatch Router

AMQ Streams Overview

EVENT-DRIVEN ARCHITECTURE

39 Source

Enterprise data streaming platform
distribution based on Apache Kafka.

Available standalone on Red Hat
Enterprise Linux VMs/bare metal or
on OpenShift (based on Strimzi
project).

Running Apache Kafka on OpenShift

40

▸ Red Hat AMQ streams provides:

･ Container images for Broker, Connect, Zookeeper and MirrorMaker

･ Kubernetes Operators for managing/configuring Apache Kafka

clusters, topics and users

･ Kafka Consumer, Producer and Admin clients, Kafka Streams

･ Tools like Cruise Control (TP)

▸ Upstream Community: Strimzi

･ 100% Open source project licensed under Apache License 2.0

･ Part of the Cloud Native Computing Foundation (CNCF)

EVENT-DRIVEN ARCHITECTURE

Source

Operational Excellence with Red Hat

41

EVENT-DRIVEN ARCHITECTURE

Source

Kafka optimized for Kubernetes
▸ Strimzi.io provides Kube-native fit for Kafka

▸ Member of the CNCF community

▸ Addresses management and operational complexity of enterprise

Kafka architecture via OpenShift Operator

Eventing built into the platform
▸ Comprehensive catalog of event sources and sinks

▸ Dynamic scaling and event dispatch based on Knative

Event-Driven applications are more than Kafka
▸ Reactive framework support based on Quarkus

▸ Encapsulate business decisions/actions from application logic as

Kubernetes services

EVENT-DRIVEN ARCHITECTURE

42 Mapping AMQ Components to Patterns

A Complete Foundation for the Event-Driven Enterprise

DESCRIPTION BEST FIT
PATTERNS

POSSIBLE
PATTERNS UNSUITABLE PATTERNS

AMQ BROKER

Traditional messaging broker w/ Queuing
& Pub/Sub
Rich feature set inc. JMS 2.0
Best-in-class performance
Based on Apache ActiveMQ Artemis

DURABLE
EVENTS

VOLATILE EVENTS
COMMAND
QUERY

REPLAYABLE EVENTS

AMQ
INTERCONNECT

Message router
1:1 (anycast) and 1:many (multicast)
Secure messaging backbone for hybrid
cloud
Based on Apache Qpid Dispatch Router

COMMAND
QUERY
VOLATILE
EVENTS

DURABLE EVENTS
REPLAYABLE EVENTS

AMQ STREAMS
Enterprise distribution of Apache Kafka
Simplified deployment on OpenShift
Based on Kafka and Strimzi

REPLAYABLE
EVENTS
DURABLE
EVENTS

COMMAND
QUERY

VOLATILE EVENTS
TRANSACTED/FILTERED
EVENTS

Kafka
Connectivity

44

AMQ streams on RHEL AMQ Streams on OpenShift

AMQ Streams Deployment Options

EVENT-DRIVEN ARCHITECTURE

45

https://developers.redhat.com/blog/2019/06/06/accessing-apache-kafka-in-strimzi-part-1-introduction/

AMQ streams on OpenShift

my-cluster-kafka-bootstrap

my-cluster-kafka-0

my-cluster-kafka-1

my-cluster-kafka-2

StatefulSet

EVENT-DRIVEN ARCHITECTURE

https://developers.redhat.com/blog/2019/06/06/accessing-apache-kafka-in-strimzi-part-1-introduction/

46

EVENT-DRIVEN ARCHITECTURE

Red Hat
Supported Community Only

K KMLT

Camel
Kafka Connect

Quarkus
Powered

47

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.8/html/apache_camel_component_reference/kafka-component

▸ Traditional Apache Camel component

▸ Wrapper for the Producer and Consumer
API

▸ Used to retrieve or send events to Apache
Kafka

▸ Part of a Camel route

▸ Configured using component path and
query parameters

▸ Managed by the user

Camel Kafka Component

from("direct:start")
 // Message to send
 .setBody(constant("Message from Camel"))
 // Key of the message
 .setHeader(KafkaConstants.KEY, constant("Camel"))
 .to("kafka:test?brokers=localhost:9092");

from("kafka:test,test1,test2?brokers=localhost:9092")
 .log("Message received from Kafka : ${body}")
 .log(" on the topic ${headers[kafka.TOPIC]}")
 .log(" on the partition ${headers[kafka.PARTITION]}")
 .log(" with the offset ${headers[kafka.OFFSET]}")
 .log(" with the key ${headers[kafka.KEY]}")

Producing messages to Kafka

Consuming messages from Kafka

EVENT-DRIVEN ARCHITECTURE

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.8/html/apache_camel_component_reference/kafka-component

Why use Camel for your Kafka connectivity?

48

▸ Consolidate events stored in kafka into a

Mongodb instance for reporting purposes

(Mongodb Sink)

▸ Consolidate events stored in kafka into an

Elasticsearch instance for analytics purposes

(Elasticsearch Sink)

▸ Ingest transactional log events to further

process and aggregate them (files source of

syslog source)

Ingesting data into kafka platform and streaming data out of it

Source:

EVENT-DRIVEN ARCHITECTURE

Red Hat
Integration for
Apache Kafka

Apache Kafka (Community)

EVENT-DRIVEN ARCHITECTURE

50

Kafka Cluster

Zookeeper
Cluster

Kafka Connect
Cluster

Other Connectors Mirror Maker 2

Zookeeper
Cluster

Kafka Cluster

Kafka Connect
Cluster

Zookeeper
Cluster

Java Clients /
Kafka Streams
(Inc Quarkus)

Manages

Replicates

Consumes / Produces

Connects

Converts

Java Clients /
Kafka Streams

EVENT-DRIVEN ARCHITECTURE

51

Kafka Cluster

Cruise Control

Entity Operator
(Topic, User)

Cluster Operator

Zookeeper
Cluster

HTTP Bridge

Kafka Connect
Cluster

Other Connectors Mirror Maker 2

Zookeeper
Cluster

Kafka Cluster

Kafka Connect
Cluster

Zookeeper
Cluster

Manages

Manages

Deploys

Manages

Validates

Replicates

Consumes / Produces

Consumes / Produces

Connects

Converts

Single Sign On

Authenticates

Java Clients /
Kafka Streams
(Inc Quarkus)
Java Clients /
Kafka Streams

52

EVENT-DRIVEN ARCHITECTURE

Kafka Cluster

Cruise Control

Entity Operator
(Topic, User)

Cluster Operator

Zookeeper
Cluster

HTTP Bridge

Kafka Connect
Cluster

Debezium
Connectors

Camel Kafka
Connectors Other Connectors

Service Registry

Mirror Maker 2

Zookeeper
Cluster

Kafka Cluster

Kafka Connect
Cluster

Zookeeper
Cluster

Debezium
Connectors

Camel K & Kamelets
/ Camel Extensions

for Quarkus

Java Clients /
Kafka Streams
(Inc Quarkus)

Manages

Manages

Deploys

Manages

Validates

Validates

Replicates

Consumes / Produces

Consumes / ProducesConnects

Captures

Connects

Converts

Java Clients /
Kafka Streams
(Inc Quarkus)

API Management

Secures

Single Sign On

Authenticates

Red Hat AMQ Streams

Red Hat App Foundations

Apache Kafka

53

Reference: https://www.confluent.io/confluent-community-license-faq/

streams on RHEL

Apache Kafka

streams on OCP

Competitor
Platform

Apache Kafka +
Bridge +

Cruise Control

AMQ Streams +
OpenShift
Operators

Apache Kafka +
Kubernetes
Operator +

Kafka Connectors +

 KSQL + Replicator
+ Control Center

AMQ Streams +
OpenShift

Operators + Service
Registry + Debezium
Connectors + Camel
Kafka Connectors +

AMQ + Fuse
Connectors + API

Management +
Single Sign On +

Quarkus +
Serverless (Knative)Community

The complete vision is
delivered by Red Hat
Integration

EVENT-DRIVEN ARCHITECTURE

https://www.confluent.io/confluent-community-license-faq/

Messaging czy Streaming?

To zależy :)

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Thank you

