Zero Trust Security for Cloud Native Environments

Maria Simon Marcos
Senior Product Manager
Hybrid Platforms, Red Hat
Our reality

The concept of ‘perimeter’ is changing

- Physical
- Virtualization
- Containers & K8s
- Distributed Workloads
A layered approach

Security posture

Traditional approach

- Based on a trusted zone/untrusted zones
- Reactive Security:
 - Deny list policy
 - Demilitarized zones
 - Antivirus
 - Intrusion systems

Zero trust approach

- Based on no implicit trust.
 Authentication and authorization required between all parties. Identity, Integrity, Isolation
- Proactive Security:
 - Live segmentation
 - Supply chain security
 - Policy as code / Security automation
 - Continuous compliance enforcement
Defense in depth
Building better walls

Walls = security controls

Unknown risks:
- Mitigated via overlapping, diverse controls
- Complementary implementations
- Continuous assessments of the status of the controls
- Adversarial testing to find uncovered holes

Access granted

Zero trust
Additional gates
What’s is the foundation of the Zero Trust model?

7 pillars based on your assets

- **Automation & Orchestration**
 - Automated policy decisions

- **Visibility & Analytics**
 - Constant monitoring & logging combined with threat intelligence and analytics

- **Network**
 - Microsegmentation and isolation
 - Data categorization & encryption

- **Application & Workload**
 - Security wrapped around each workload, supply chain security
 - Identification & authorization of devices

- **Device**
 - Authentication & access control policies

- **Identity**

Zero Trust for Cloud Native Environments
State of Kubernetes security

Security is a business-level discussion

Security remains one of the top concerns with container and Kubernetes strategies.

Left unaddressed, Kubernetes security challenges can inhibit business performance.

Security concerns slow innovation
55% delayed or slowed down application deployment into production due to Kubernetes security concerns

Security issues hinder growth
31% suffered customer or revenue loss due to a Kubernetes security or compliance issue

Source:
State of Kubernetes Security 2022
Cloud Native Zero Trust Security

Let’s look at the 7 pillars
Identity and Access Management

- Use identity provider with 2FA
- Different access for humans & machines
- Manage cluster access and application access separately
- Least privilege role based access controls

Workload identity = Service Accounts

- Separate service accounts per application
- Audit service accounts in your cluster
Zero Trust for Cloud Native Environments

Device (Host)

Secure Boot
- Provides guarantee that a trusted, unmodified kernel is loaded
- Advanced Intrusion Detection Engine (AIDE) to monitor file integrity and detect system intrusions

Volume encryption
- Addresses disk/image theft, including etcd datastore
- NBDE: Network-Bound Disk Encryption via Clevis and Tang
- TPM: Trusted Platform Module Encryption

Hardening
- Use a container optimized operating system to minimize attack surface
- Harden the host environment

Automation & Orchestration
Visibility & Analytics
Data
Network
Application & Workload
Device
Identity
Application & Workload

Supply Chain Security

- Use a trusted container base image
- Secure Supply Chain Validated Pattern Architecture
 - Image signing (Sigstore - Cosign)
 - Scanning of deployment configurations and Helm charts (KubeLinter)
 - Deployment signing
 - Tekton Chains helps automate the process

Limiting Linux Capabilities

- OCP SCCs: Limit container runtime privileges in the pod spec using security context constraints.
- Run your cluster on a container optimized host OS such as RHCOS that comes with SElinux.
 - For other Linux distros, use App Armor.
- (Advanced) Define seccomp profile to filter system call availability within a container
Network

Microsegment and Isolate
- Multi-tenancy ‘resource’ isolation using different namespaces
- Restrict pod to pod in cluster traffic with Kubernetes Network policies
- Use Ingress controller to expose services outside the cluster
- Use Egress controls to restrict traffic leaving your cluster:
 - Egress IP
 - Egress Firewall
- Different TLS security profiles can be chosen per component in OCP

Service Mesh
- Easier service-to-service (east-west traffic) communication permission by service name
- Service identities are authenticated using mTLS
- Sidecar proxies attached to the service collect metrics and log all communication and access request between services
Zero Trust for Cloud Native Environments

Data

Secret management

- Decide where are you going to store your secrets:
 - etcd
 - External secrets store
 - KMS (Key Management System)

- Integrations:
 - External Secrets Operator provides for external management systems eg. Azure Key Vault, AWS Secrets Manager...

- Decide if you want to encrypt:
 - Etcd
 - Disk

Encryption in transit

- Pod to pod communication
 - Service-to-service communication with mTLS
 - Service Mesh

- Data from/to outside the cluster
 - Ingress controller and API Gateways in Service Mesh help expose services via SSL/TLS
Visibility & Analytics

Logging
- Different logs available:
 - Host OS
 - API server
 - Cluster component
 - Application
- Select the logging verbose most applicable for your use case
- Forward logging to a external server or your SIEM of choice

Monitoring
- Scan often your workloads images for vulnerabilities
- Monitor overly permissive access in your workloads
- Health monitoring of your cluster
- Malicious activity - Runtime behavior analysis
- Identify misconfigurations
- Automated compliance

Visibility
- Use single pane of glass and multi-cluster visibility to facilitate understanding of metrics and trends over time:
 - Security policy violations
 - Compliance
 - Vulnerability management
 - Risk profiles
 - Network communication

Automation & Orchestration

Visibility & Analytics
- Data
- Network
- Application & Workload
- Device
- Identity
Automation & Orchestration

Policy based Governance

- Policy-based application pipelines with built-in security gates
- Use policy as code and GitOps Integration
- Integration of admission controllers into the policy framework. Eg. OPA Gatekeeper

Automation

- Automated enforcement of the desired state of your clusters
- Perform remediation actions by leveraging Ansible Automation Platform (Automated governance)
- Automate compliance checks and remediation against security standards such: CIS benchmarks and NIST 800-53
OpenShift delivers continuous security

Control
- Application Lifecycle and Locality
 - Vulnerability analysis
 - App config analysis
 - APIs for CI/CD integrations
 - Trusted content
 - Container registry
 - Build management
 - CI/CD pipeline

Protect
- Fleet Management
 - Policy admission controller
 - Compliance assessments
 - Risk profiling
 - Kubernetes platform lifecycle
 - Identity and access management
 - Protect platform data
 - Deployment policies

Detect & Respond
- Fleet Observability & Alerts
 - Runtime behavioral analysis
 - Auto-suggest network policies
 - Threat detection / incident response
 - Container isolation
 - Network isolation
 - Protect application access and data
 - Observability

BUILD
DEPLOY
RUN

DevSecOps

Red Hat
Thank you

Red Hat is the world’s leading provider of enterprise open source software solutions. Award-winning support, training, and consulting services make Red Hat a trusted adviser to the Fortune 500.