

Luigi Fugaro
Sr. Solution Architect
Redis

Redis Enterprise as Vector Database
Agenda:
● Native OpenShift Integration
● Introduction to vector embeddings
● Vector Databases
● Redis Enterprise as Vector Database
● The client libraries
● The use cases
Ø Text Semantic Search
Ø LLM & RAG

Native OpenShift Integration

Native OpenShift Integration

Introduction to vector embeddings
● Used to represent unstructured data
● A list of floating-point numbers
● It has fixed size
● Compact and dense data

representation
● Produced by feature engineering or

deep learning techniques
● Translates perceived semantic similarity

to the vector space

Introduction to vector embeddings

Feature Engineering

● Manual creation

● Domain knowledge

● Expensive to scale

Using models

● Models are trained

● Turn objects into vectors

● Dense and high-dimensional

How to create vector embeddings?

How to create vector embeddings?
1. The input is transformed into a

numerical representation
2. Features are captured by the

network
3. A layer is extracted, it provides a

dense representation of the features
4. This layer is the embedding and is

feasible for similarity search

Introduction to vector embeddings

Introduction to vector embeddings
from sentence_transformers import SentenceTransformer

model = SentenceTransformer('sentence-transformers/multi-qa-MiniLM-L6-cos-
v1')
embedding = model.encode("This is a technical document, it describes the SID
sound chip of the Commodore 64")

print(embedding[:10])
[0.00631137 -0.005189 -0.03774299 -0.09026785 -0.05783698 0.01209931 -
0.02595172 0.01094836 -0.06051398 0.0521009]

Vector Databases

What is a Vector Database?
● A database that can store vectors

● It can index vectors

● It can search the vector space

● Has throughput requirements

● It is scalable and highly available

Redis Enterprise as Vector Database

Redis Enterprise as Vector Database

Raw file Embedding Model Vector Embeddings

Redis Enterprise

Redis Enterprise as Vector Database
Vector Similarity Search:
● Vector Similarity Search (VSS) is a key feature of a vector database.
● It is the process of finding data points that are similar to a given query

vector in a vector database.
● Popular VSS uses include recommendation systems, image and video

search, natural language processing, and anomaly detection.

Redis Enterprise RediSearch
Vector Similarity

Search

Redis Enterprise as Vector Database
Vector Similarity Search focuses on finding out how alike or different
two vectors are. To achieve this in a reliable and measurable way, we
need a specific type of score that can be calculated and compared
objectively. These scores are known as distance metrics.

Redis Enterprise as Vector Database

Raw file Embedding Model Vector Embeddings
Redis Enterprise

That is a very
happy person

That is a Happy
Dog

That is a sunny day

Redis Enterprise as Vector Database

Redis Enterprise

Redis Enterprise as Vector Database

Raw file Embedding Model Vector Embeddings
Redis Enterprise

That is a happy
person

Redis Enterprise as Vector Database

Redis Enterprise

Redis Enterprise as Vector Database
import numpy as np

from numpy.linalg import norm
from sentence_transformers import SentenceTransformer

Define the model we want to use (it'll download itself)
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')

sentences = [
"That is a very happy person",
"That is a happy dog",
"Today is a sunny day"
]

sentence = "That is a happy person"

vector embeddings created from dataset
embeddings = model.encode(sentences)

query vector embedding
query_embedding = model.encode(sentence)

define our distance metric
def cosine_similarity(a, b):

return np.dot(a, b)/(norm(a)*norm(b))

run semantic similarity search
print("Query: That is a happy person")
for e, s in zip(embeddings, sentences):
print(s, " -> similarity score = ",

cosine_similarity(e, query_embedding))

Redis Enterprise as Vector Database
from redis import Redis
from redis.commands.search.field import VectorField, TagField

def create_flat_index(redis_conn: Redis, number_of_vectors: int, distance_metric: str='COSINE'):

image_field = VectorField("img_vector","FLAT", {
"TYPE": "FLOAT32",
"DIM": 512,
"DISTANCE_METRIC": distance_metric,
"INITIAL_CAP": number_of_vectors,
"BLOCK_SIZE": number_of_vectors})

redis_conn.ft().create_index([image_field])

Redis Enterprise as Vector Database
def search_redis(

redis_conn: redis.Redis,
query_vector: t.List[float],
return_fields: list = [],
k: int = 5,

) -> t.List[dict]:
Prepare the Query
base_query = f'*=>[KNN {k} @embedding $vector AS vector_score]'
query = (

Query(base_query)
.sort_by("vector_score")
.paging(0, k)
.return_fields(*return_fields)
.dialect(2)

)
params_dict = {"vector": np.array(query_vector, dtype=np.float64).tobytes()}
Vector Search in Redis
results = redis_conn.ft(INDEX_NAME).search(query, params_dict)
return [process_doc(doc) for doc in results.docs]

Redis client libraries

Redis Enterprise as Vector Database
Vector indexing algorithms
Redis Enterprise manages vectors in an index data structure to enable intelligent similarity search that balances search
speed and search quality. Choose from two popular techniques, FLAT (a brute force approach) and HNSW (Hierarchical
Navigable Small World - a faster, and approximate approach).

Vector search distance metrics
Redis Enterprise uses a distance metric to measure the similarity between two vectors. Choose from three popular
metrics – Euclidean, Inner Product, and Cosine Similarity – used to calculate how “close” or “far apart” two vectors are.

Powerful hybrid filtering
Take advantage of the full suite of search features available in Redis Enterprise query and search. Enhance your
workflows by combining the power of vector similarity with more traditional numeric, text, and tag filters. Incorporate
more business logic into queries and simplify client application code.

https://arxiv.org/abs/1603.09320
https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Inner_product_space
https://en.wikipedia.org/wiki/Cosine_similarity

Redis Enterprise as Vector Database
Real-time updates
Real-time search and recommendation systems generate large volumes of changing data.
New images, text, products, or metadata? Perform updates, insertions, and deletes to the
search index seamlessly as your dataset changes overtime. Redis Enterprise reduces costly
impacts of stagnant data.

Vector range queries
Traditional vector search is performed by finding the “top K” most similar vectors. Redis
Enterprise also enables the discovery of relevant content within a predefined similarity
range or threshold for an alternative, and offers a more flexible search experience.

Use cases

Text Semantic Search
Vectorize, store and index your documents
Based on a provided document, I want to get a list of recommendations "you may also want to read..."

• Audit the length of your documents: embedding
models consider documents up to a number of words

• Split the documents into chunks if they exceed the
supported length

• Store the original documents and its metadata in a
hash or JSON
JSON documents can store and index multiple
embeddings

Text Semantic Search
Search your documents
Propose a list of similar documents, books, web pages.

• The current document has already a vector
embedding associated

• The embedding is compared to the rest of vector
embeddings with VSS

• It is possible to specify the number of results
• It is also possible to perform hybrid search with

metadata such and search for recent documents,
stock available, categories and more

• You can filter the results by the similarity score
using VSS range search

Visual Search
Vectorize, store and index your documents
Based on a provided image, I want to get a list of similar images ”check products similar to..."

• Convert the images to the vector embedding using a
suitable model (Resnet, Densenet...)

• Store the embedding together with metadata, images
are usually in the file system

• You can choose between storing the embeddings in
hash or JSON documents.
JSON documents can store and index multiple
embeddings

Visual Search
Search your images
Propose a list of similar products, faces, pictures in general.

• Documents store metadata and the embedding for the
image

• The embedding is compared to the rest of vector
embeddings with VSS

• It is possible to specify the number of results
• It is also possible to perform hybrid search with

metadata such and search for recent documents, stock
available, categories and more

• You can filter the results by the similarity score using
VSS range search

Large Language Models - LLM
Motivation

Fine Tuning

● Teach the model from your data
● Higher task-specific performance
● Resolves prompts size limitations
● Higher accuracy than RAG
● Fresh knowledge needs retraining

Retrieval Augmented Generation

● Incorporate external knowledge sources
via retrieval

● Extend the LLM with your knowledge
● Works with your latest data
● Prompt engineering is crucial
● Manages fresh knowledge immediately

Large Language Models - LLM
Context retrieval for Retrieval Augmented Generation (RAG)

Pairing Redis Enterprise with
Large Language Models (LLM)
such as OpenAI's ChatGPT, you
can give the LLM access to
external contextual knowledge.
• Enables more accurate

answers and prevents model
'hallucinations'.

• An LLM combines text
fragments in a (most often)
semantically correct way.

Large Language Models - LLM
LLM Conversion Memory

The idea is to improve the model
quality and personalization
through an adaptive memory.
• Persist all conversation history

(memories) as embeddings in
a vector database.

• A conversational agent checks
for relevant memories to aid
or personalize the LLM
behaviour.

• Allows users to change topics
without misunderstandings
seamlessly.

Large Language Models - LLM
Semantic caching

Because LLM completions are
expensive, it helps to reduce the
overall costs of the ML-powered
application.
• Use vector database to cache

input prompts
• Cache hits evaluated by

semantic similarity

Retrieval Augmented Generation
Choose your domain and prepare your data
Connecting your data is not easy, but Redis comes to the rescue. But before starting, you should answer
a few questions.

• Who is the target of your service, what data can you offer?• What LLM do you plan to use, local or as-a-service?
OpenAI
Llama
Bard
Vicuna• What embedding model are you planning to adopt?
HuggingFace
OpenAI
Cohere• Planning to use a framework (LangChain, LlamaIndex...)?• Are you storing and sending the context on every interaction?• Planning to setup a semantic cache or a conversation
memory?

Relative Response Quality Assessed by GPT-4* (Vicuna)

https://lmsys.org/blog/2023-03-30-vicuna/

Retrieval Augmented Generation
Choose your domain and prepare your data
Generation. Chat with your data.

When your data is loaded, indexed and you have completed the integration of your
codebase with the chosen LLM, when the user asks a question the following
happen:

• The question in natural language is turned into an embedding• Using VSS and based on the question, related content is retrieved from Redis
Enterprise 3. The prompt is built based on the results• The prompt is sent to the LLM and the response is returned to the user

Additionally:

• You may cache the response in Redis Enterprise• You can store the context in Redis Enterprise and reuse it in a conversation• You can create complex logic against your entire data set using function calling

https://platform.openai.com/docs/guides/gpt/function-calling

So, why Redis Enterprise?

Why Redis Enterprise?
Benefits to Customers:

• Certified to interoperate with
Red Hat OpenShift,
following best practices for
Kubernetes and
containerization, and
portability across clouds.

• Simple to transact, manage
and control enterprise
software with one bill from
IBM through the Red Hat
Marketplace and automated
deployment to any cloud.

Why Redis Enterprise?
Benefits to Customers:

• Certified to interoperate with
Red Hat OpenShift,
following best practices for
Kubernetes and
containerization, and
portability across clouds.

• Simple to transact, manage
and control enterprise
software with one bill from
IBM through the Red Hat
Marketplace and automated
deployment to any cloud.

Why Redis Enterprise?
● Native OpenShift Integration
● You already have it
● Simple and efficient
● Highly performant
● Highly scalable
● One solution for vectorizing, indexing, searching

and caching
● It’s the only database that doesn’t need a cache
● Runs everywhere

Redis Enterprise

Q&A?

Thank you

