Clean architecture

@Infrastructure level

Maarten Vandeperre
SSA (AppDev)

Keep your options open

Maarten Vandeperre
SSA (AppDev)

adeospue| 4DND

Landscape

Database

Card Mode

Members Serverless Wasm

Streaming & Messaging Application Definition & Image Build Continuous Integration & Delivery

HELM @ Basiotage U" anr
sudpaces Kubeveta
- wTv

""\ -

’, ..,m‘ kots‘ g

pouso| | [ocua| it @

2| N
ae

Security & Compliance

Platform

Certified Kubernetes - Distribution

7 Falco

Members

CD Foundation Landscape

‘ Red Hat

Possibilities
Possibility
Possibility

Possibility
Possibility
Possibility r’

Real world analogies

‘ Red Hat

(@)
z
(@)
Bl
o
=)
o
(0]
(o]
Q
o
o

+ 10 year experience in software development.
Software architect - technical lead - development.
@ Red Hat since 01/01/2023.

Freak about clean architecture.

& RedHat

Agenda

e Clean architecture - concepts
e How to map it on the infrastructure
e Extra’s

@) RedHat

Clean architecture

concepts

‘ Red Hat

Clean architecture

Clean architecture

Keep your options open.
Cron Job

Serverless function 1

Serverless function n

- OpenShift as core.

Serverless function 2

Serverless function 3 Knative as core.

Keep on using cloud services.
Q

Red Hat

https://developers.redhat.com/articles/2023/04/17/my-advice-building-maintainable-clean-architecture#
https://developers.redhat.com/articles/2023/04/17/my-advice-building-maintainable-clean-architecture#
https://developers.redhat.com/articles/2023/04/17/my-advice-building-maintainable-clean-architecture#
https://developers.redhat.com/articles/2023/04/17/my-advice-building-maintainable-clean-architecture#
https://developers.redhat.com/articles/2023/04/17/my-advice-transitioning-clean-architecture-platform
https://developers.redhat.com/articles/2023/04/17/my-advice-transitioning-clean-architecture-platform
https://developers.redhat.com/articles/2023/04/17/my-advice-transitioning-clean-architecture-platform
https://developers.redhat.com/articles/2023/04/17/my-advice-transitioning-clean-architecture-platform

Clean architecture

Clean architecture

Keep your options open.

OpenShift as core.

Knative as core.

Keep on using cloud services.

RedHat

https://developers.redhat.com/articles/2023/04/17/my-advice-building-maintainable-clean-architecture#
https://developers.redhat.com/articles/2023/04/17/my-advice-building-maintainable-clean-architecture#
https://developers.redhat.com/articles/2023/04/17/my-advice-building-maintainable-clean-architecture#
https://developers.redhat.com/articles/2023/04/17/my-advice-building-maintainable-clean-architecture#
https://developers.redhat.com/articles/2023/04/17/my-advice-transitioning-clean-architecture-platform
https://developers.redhat.com/articles/2023/04/17/my-advice-transitioning-clean-architecture-platform
https://developers.redhat.com/articles/2023/04/17/my-advice-transitioning-clean-architecture-platform
https://developers.redhat.com/articles/2023/04/17/my-advice-transitioning-clean-architecture-platform

Clean architecture

[5 knative-d Pt dd vice ~/workspace/redhat/knative
> [3J.idea
> [J.mvn
~ [application
~ [configuration
[5 microservi iguration

[5 microservice-address-configuration
[5 microservice-person-configuration
[2 monolith-configuration
v [core
[J domain
[5v1 [core-domain-v1]
[usecases
[3v1 [core-usecases-v1]
v [Dinfrastructure
[dataproviders
[5 core-dataprovider [infrastructure-dataproviders-core]
[in-memory-dataprovider
[mongodb-dataprovider
[postgres-dataprovider
[db-init-scripts
[tutorial

@) .gitignore

& docker-compose.yaml
mvnw

= mvnw.cmd

M pom.xml

M4 README.md

class DefaultCreatePersonUseCase(
private val personRepository: PersonRepository
) : CreatePersonUseCase {
maartenvandeperre +1
override fun execute(requestData: CreatePersonUseCase.Request): CreatePersonUseCase.Response {
if (requestData.firstName == null) {
throw ValidationException("First name should not be null")
}
if (requestData.lastName == null) {
throw ValidationException("Last name should not be null")

1
if(requestData.addressRef != null){
try {
UUID.fromString(requestData.addressRef)
} catch (e: Exception) {
throw ValidationException("Address ref is not a UUID format")
}
}

return CreatePersonUseCase.Response(
personRepository.save(
PersonRepository.DbPerson(

ref = UUID.randomuUID(),
firstName = requestData.firstName,
lastName = requestData.lastName,
birthDate = requestData.birthDate,
addressRef = requestData.addressRef?.let { UUID.fromString(it) }

}

<profile>
<id>microservice-account</id>
<modules>
<module>application/configuration/microservice-account-configuration</module>
<module>application/core/domain/vi</module>
<module>application/core/usecases/vl</module>
<module>application/infrastructure/dataproviders/core-dataprovider</module>
<module>application/infrastructure/dataproviders/in-memory-dataprovider/vi</module>
<module>application/infrastructure/dataproviders/postgres-dataprovider/vi</module>
<module>application/infrastructure/dataproviders/mongodb-dataprovider/vi</module>
</modules>
</profile>

Clean architecture

Enforce by compilation.

Easy to plug-and-play.

Use cases instead of SOA.
No DRY.
Isolation of logic.

Withstand the test of time.

RedHat

https://github.com/maarten-vandeperre/clean-architecture-software-sample-project
https://github.com/maarten-vandeperre/clean-architecture-software-sample-project
https://github.com/maarten-vandeperre/clean-architecture-software-sample-project

Possibilities
Possibility
Possibility

Possibility
Possibility
Possibility r’

Clean architecture

Map it on the infrastructure level

Why hybrid- and/or multi-cloud?

Clean architecture @ infrastructure level

First phase: the basic architecture

: : . A , Demo architecture outline
Person service Movie service Movie tracking service Movie Recommendation service

0_ m O_ m e 0_
o e o o

Person service

Movies catalog service

Movie tracking service

Movie recommendation

NoSQL SQL SQL Graph service
database database database Database

Person & Movies Who's People -
Address catalog watching Movies

data which movie linked data

RedHat

Clean architecture @ infrastructure level

First platform design

Step 1: Azure all the way

All Azure

Person service Movie service Movie tracking service Movie Recommendation service

NoSQL database = CosmosDB

SQL database = PostgreSQL

"Dependencies” Graph database = Gremlin

3 G !
W PostgreSQL PostgreSQL Gremlin

RedHat

Clean architecture @ infrastructure level

Evaluation of the dependencies

Step 2: evaluate "dependencies”
AKS

CosmosDB = accepted

Person service Movie service Movie tracking service Movie Recommendation service

PostgreSQL = On-premise

A

] OracleDB is preferred

|
I

| i "Dependencies" Grem“n —3 no_go

) @ ﬁl AKS = seems cheaper =
CosmosDB PostgreSQL PostgreSQL Gremlin
K accepted

Il Risks and hidden costs that go
along with a DIY solution were

overlooked during the evaluation.

RedHat

Clean architecture @ infrastructure level

Updated platform design

Step 3: select perferred dependencies

B T — AKS

P R ®

All dependencies accepted

p— Person service Movie service Movie tracking service Movie Recommendation service

Dependencies not available

within the “programming

—_— fg‘**—— - language” AKS or Azure
) Analogy with Java & Python
CosmosDB On-prem On-prem SAAS dependencies = GraalVM
OracleDB OracleDB Neo4J

Search GraalVM solution for
AKS/Azure

RedHat

Clean architecture @ infrastructure level

Step 4: move to hybrid- & multi-cloud

me s s

Person service

Movie service

Movie tracking service

Movie Recommendation service

a

CosmosDB

e

w

O

On-prem
OracleDB

On-prem
OracleDB

,/1/
SAAS
Neo4J

\\’ﬂ& multi-cloud

“Programming language” solution

Keep your options open

GraalVM analogy = go
hybrid
Hybrid- & multi-cloud

= The platform will be more
resilient, will require less
maintenance (costs and time) and
allows (fairly easily) to be innovated

in the future.
= Platform is open for innovation,

can grow/transform with the

organization.

RedHat

‘ Clean architecture @ infrastructure level

RED HAT
OPENSHIFT

Container Platform

Can bring clean architecture
to the infrastructure level

Disclaimer

Although we used OpenShift as a
solution for the issues that come
along with EKS, OpenShift is way
more than just a Kubernetes
installation, it’s a full
application/container platform.

RedHat

Fxtra's on the infra side

Use cases

‘ Red Hat

22

Clean architecture

AWS Lambda

Knative

core
functionality

Azure Functions

Clean architecture

Serverless: no competition
between Knative and
Lamda/Functions

= play on different levels.

Knative: core layer.

Lambda/Function:

infrastructure layer.

RedHat

Clean architecture

Service x
e
Database
Technology y

Debezium

23

ﬁﬂ Account
REST service

Person
service

Account

Knative service

\

AL
TILLLLLLL ALY

Ky

Knative

Debezium

Clean architecture

Standardization, without
hijacking innovation.

Standardized tech stack, but

open for other tooling.

RedHat

Clean architecture

* Long-living jobs
*Locﬁ B

3: Use custom token

API Gateway

3scale

2: Validate token &
get user roles

RH build of Camel
Fuse

1: Pass access token,
get own token

Clean architecture

Abstract away issues.

Infrastructure (e.g., Camel) as
interface.
Use the toolbox.

= Developer experience.

RedHat

Thanks

&...

Keep your code and
architectures clean)

