

RED HAT TECH UPDATE APRIL 2018

Peter Gustafsson Solutions Architect Red Hat Sweden

Johan Odell Solutions Architect Red Hat Sweden Johan Robinson Specialist Solutions Architect - Storage Red Hat EMEA

AGENDA

Red Hat Tech Update

- Red Hat Satellite 6.3 New Features
- Gluster Storage
- Ceph Storage
- RHHI
- Red Hat CloudForms 4.6

The DEMO-environment is proudly brought to you by

Red Hat Satellite 6.3 New Features

Key Focus Areas

Content management

Supportability

System provisioning

Security & user access

Configuration management

Usability

PACKAGING

SIMPLIFIED PRICING AND PACKAGING

Get the most out of your Red Hat infrastructure investment

OLD MODEL

RED HAT

Purchase each of the following:

- Red Hat Satellite Server
- Red Hat Satellite Capsule Server
- Smart Management Add-On

RED HAT INSIGHTS Purchase the following separately:

Red Hat Insights Add-On

NEW MODEL

RED HAT SATELLITE + RED HAT NSIGHTS

Receive all Satellite and Insights elements (servers & clients) with the purchase of Smart Management

CONTENT MANAGEMENT

IMPROVED CONTENT DOWNLOAD POLICIES AND SYNCHRONIZATION

Better control over download policies using Lazy Sync

Lazy Sync Modes:

All modes applicable to the Red Hat Satellite Server and Red Hat Satellite Capsule Servers. Capsules can now set a content download policy independent of the Satellite settings.

On demand (default)

Retrieves content only when systems request it.

Background

Allows repositories to be published and made available to systems while the content downloads asynchronously.

Immediate

Downloads all content before publishing the repository.

CUSTOM FILE-TYPE REPOSITORIES

Unify the delivery of managed content

Create repositories containing custom file types with new repository management tooling and import those repositories into Red Hat Satellite.

Version management

Custom file types can be added to content views and versioned similar to other content types (RPMs, ISOs, etc).

SYSTEM PROVISIONING

PULL TEMPLATES FROM GIT

Improved ability to manage provisioning templates, similar to content versioning

Manage and Deploy

Edit templates and clone them using GIT branching and versioning, or any version control system.

CONFIGURATION MANAGEMENT

SATELLITE AND ANSIBLE TOWER INTEGRATION

Documented best practices to help optimize use of both products

By integrating Red Hat Satellite with Red Hat Ansible[®] Tower, administrators can now perform the following functions:

Dynamic inventory

Allows Ansible Tower to use Satellite as a dynamic inventory source.

Provisioning callbacks

Allows systems provisioned via Satellite to "callback" to Ansible Tower so that playbook runs can happen post-provisioning.

SUPPORTABILITY

PLATFORM SUPPORTABILITY ENHANCEMENTS

Puppet 3.8 & 4

puppet

Amazon EC2

Customers have the freedom to use Puppet 4 within Red Hat Satellite in lieu of (or in conjunction with) their existing Puppet 3.8 deployment. Feature Overview: <u>https://access.redhat.com/articles/3358711</u>

Unified Extensible Firmware Interface support (UEFI)

Provides mechanisms to allow for support of new technologies, improved development, and enhanced customer experience during the time before the operating system loads.

Amazon Web Services (AWS)

AWS EC2 is now a supported platform for Red Hat Satellite & Red Hat Satellite Capsule Server). Feature Overview: <u>https://access.redhat.com/articles/3358631</u>

SATELLITE AND INSIGHTS INTEGRATION

Deeper integration with Red Hat Insights

By integrating Red Hat Satellite with Red Hat Insights, administrators can now perform the following functions:

Dashboard Widgets New widgets for Insights Actions and Insights Risk Summary

Insights Planner

Build out an Insights Planner Playbook for use with Ansible or Ansible Tower from Red Hat Satellite

SECURITY & USER ACCESS

8

NEW "ORG ADMIN" ROLE

Effectively limit administrator scope within Red Hat Satellite management

The org admin role is intended to scope an administrator such that their reach within the full extent of the Satellite management plane is constrained:

Multi-tenant

No visibility into other organizations. No exposure to the existence of other organizations.

Org admin role

Cannot access existing Satellite users who already assigned other alternative organizations.

OPENSCAP TAILORING FILES

Freedom to customize OpenSCAP policy application across systems

Tailoring files

Change the behavior of an existing OpenSCAP policy without having to fork or rewrite the entire policy.

USABILITY

NOTIFICATION DRAWER

Quick access to occurring events across Red Hat Satellite

Quick Access Provides fast access to important events

Easy interaction

Gives admins the opportunity to clear or interact with the information provided in the event.

New Functionality

Limited events use the Notification Drawer today. Additional events will move to the notification drawer in the future

FUTURE-DATED SUBSCRIPTIONS

Avoid "red" status by applying subscriptions in advance

Customers can now import purchased Red Hat subscriptions before the actual start date – and allocate them as needed.

Continual coverage

Systems can be configured to have overlap between expiring and new subscriptions, ensuring continual access to content.

Future-dated subscriptions

Do not provide access to content until their start date.

Ability to clone existing Satellite Server to a new host Provides flexibility with Red Hat product upgrades and migrations

Easy Cloning

Provides a means for the customer to clone their Red Hat Satellite to assist with server migration, or to upgrade from one version of Red Hat Enterprise Linux to another.

SATELLITE RENAMING TOOL

Change the Satellite hostname while changing configuration

Automated reconfiguration of the server

Change the hostname of Red Hat Satellite or Red Hat Satellite Capsule Server while updating the various configurations needed to accomplish the change.

VIRT-WHO CONFIGURATION WIZARD

Simplified configuration and deployment of virt-who

Easy virt-who configuration

The virt-who wizard aids in running and configuring the virt-who daemon on any Red Hat Enterprise Linux Server being managed by Red Hat Satellite.

NEXT STEPS & RESOURCES

Review all Satellite 6.3 feature overviews and videos:

https://access.redhat.com/blogs/1169563

Use the Upgrade Helper to plan your upgrade-

https://access.redhat.com/labs/satelliteupgradehelper/

Attention Satellite 5 customers:

- End of support for versions 5.7 & below is January 31, 2019 access to content will not be provided after this date!
 - **Recommended action ASAP: Upgrade to Satellite 5.8** (supported thru May 2020)
 - Consider moving to Satellite 6, when ready

Red Hat Satellite Product page - http://redhat.com/satellite

Red Hat Satellite Customer Portal -

https://access.redhat.com/products/red-hat-satellite

Red Hat Satellite Documentation -

https://access.redhat.com/documentation/en-us/red_hat_satellite/

Red Hat Gluster Storage

Red Hat Gluster Storage

RED HAT' GLUSTER STORAGE

CASES Container Storage

USE

TARGET

- Persistent storage
- Registry storage
- Enterprise File Sharing
- Media streaming
- Active Archives
- **Enterprise Virtualization**

Flexible file storage for petabyte-scale workloads

- Purpose-built as a scale-out file store with a straightforward architecture suitable for public, private, and hybrid cloud
- Simple to install and configure, with a minimal hardware footprint
- Offers mature NFS, SMB and object (Swift) and native glusterfs-fuse interfaces

CCTV

GLUSTER ARCHITECTURE

Distributed scale out share nothing storage using industry standard hardware

Aggregates systems to one cohesive unit and presents using common protocols

System anatomy

sw	LVM + XFS BRICKS			LVM + XFS BRICKS	
	RHEL + RHGS				
	RAID/JBOD				
HW	Local disk or RAID LUN	Local disk or RAID LUN		Local disk or RAID LUN	Local disk or RAID LUN
	x86 standard servers				

HW

- x86 standard server RHEL certified
- RAID supported RAID6, RAID10, RAID5
- Full Flash SSD and HDD architectures
- Ethernet 10Gb/s, 40Gb/s, Infiniband supported

SW

- Self-healing and data integrity check
- HA with mirroring and data replication
- Native Scale-Out and Scale-Up
- Geo and In-system replication

Flexible Deployment with RHGS

- Same software bits across on-prem, VMs, containers and all three public clouds
- Applications can be ported across deployments without expensive re-writes
- Close integration with RHEL, RHV, and OpenShift

MULTI-PROTOCOL ACCESS

Primarily accessed as scale-out file storage with optional APIs, Swift or S3 object

Red Hat Gluster Storage What's new...
ARBITER VOLUMES

Cost effective alternative to 3-way replication

- **REDUCTION IN FOOTPRINT & TCO** Huge capacity savings
- COST-EFFECTIVE DATA INTEGRITY Integrity of 3-way w/o 3x capacity
- MULTIPLE DEPLOYMENT MODELS Dedicated or Daisy chained
- USE CASES

Backup/archiving, HCI, Stretched clusters

• ERASURE CODING VOLUME ENHANCEMENTS The following new variants are now supported:

- 10 bricks with redundancy level 2 (8 + 2)
- 20 bricks with redundancy level 4 (16 + 4)

(in addition to the already supported 4+2, 8+3 and 8+4 configurations)

PERFORMANCE IMPROVEMENTS

"find" command on a volume improved when BitRot detection is used

Parallel readdirp support

readdirp fops are sent parallelly to all the bricks. This enhances the performance for find and a recursive listing of small directories.

Enhancement to glusterfind command

provides a query sub command that provides a list of changed files

NFS GANESHA

Dynamic update of export configuration options

Most NFS-Ganesha export configuration options can be updated dynamically during normal operation without needing to export and re-export the volume.

• GEO REPLICATION STATUS CMD

The detailed geo-replication status command no longer requires master volume, slave host, and slave volume. It can be executed with or without these additional details.

gluster volume geo-replication status detail

• ENHANCED REBALANCE STATUS

The command *gluster volume volname rebalance status* now provides an estimate of the time left to rebalance completion. Calculations are based on each brick having its own file system partition.

OpenShift PersistentStorage System OPERATIONS "sets up" "submits" "submitted to" "creates" "mounted by" PersistentVolumeClaim StorageClass PersistentVolume DEVELOPER "A request for storage" "A provider of storage" "Provisioned Storage" APPLICATION POD(S) Provider: ABC Provider URL: ... Name: ... Capacity: 10 GiB Credentials: ... Size: ... Features: XYZ Options: ... AccessMode: ... "instructs" "provisions" Storage Backend _

TRANSFORM LEGACY STORAGE TO CONTAINER READY

SUMMARY

With Container-native Storage

elastic storage...

Automated Container Native Storage deployment with OCP Advanced Installation

- OCP + CNS deployed as one cluster
- CNS with <u>Block & File</u> provisioners deployed
- OCP Registry deployed on CNS
- Ready to deploy Logging, Metrics on CNS
- CNS uninstaller

Custom Volume Naming

Previously PV Names (vol_<UUID>, vol_1213456)

- Specify new attribute in CNS storage class called 'volumenameprefix'
- CNS backend volumes will be named myPrefix_NameSpace_PVCClaimName_UUID
- Easy to recognize, users follow naming convention,
- Easy to Search & Apply Policy based on prefix, Namespace, Project Name, or Claim Name

End-to-End CNS pv expansion

Can be done online from OCP

- · Previously only available from Heketi CLI
- User edits PVC for the new size, triggering PV resize
- Fully Qualified for glusterFs backed PV's
- Gluster-block PV resize will be added with RHEL 7.5

How it Works/Example:

- Add to storage class AllowVolumeExpansion=true
- · oc edit pvc claim-name
- Edit the field 'spec→ requests → storage: new value'

```
Please edit the object below. Lines be
 and an empty file will abort the edit
 reopened with the relevant failures.
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  annotations:
   pv.kubernetes.io/bind-completed: "ye
   pv.kubernetes.io/bound-by-controlle
   volume.beta.kubernetes.io/storage.c
    volume.beta.kubernetes.io/storage-pr
  creationTimestamp: 2018-02-07T12:03:36
  finalizers:
    kubernetes.io/pvc-protection
  name: claim1
 namespace: default
  resourceVersion: "396"
  selfLink: /api/v1/namespaces/default/p
 uid: ed8d425a-0bfe-11e8-b140-c85b7636c
spec:
  accessModes:
   ReadOnlyMany
  resources:
    requests:
      storage: 12Gi
 volumeMode: Filesystem
 volumeName: pvc-ed8d425a-0bfe-11e8-b14
status:
```


Capacity usage metrics

CNS GlusterFS extended to provide PV volume metrics (including consumption) through Prometheus or Query

- Metrics available from PVC end point
- User can now know PV size allocated as well as consumed and use resize (Expand) of PV if needed from OCP
- Example Metrics added
- kubelet_volume_stats_capacity_bytes
- kubelet_volume_stats_inodes
- kubelet_volume_stats_inodes_free
- kubelet_volume_stats_inodes_used
- kubelet_volume_stats_used_bytesetc

Prometheus

'curl'

TYPE kubelet_volume_stats_available_bytes gauge kubelet_volume_stats_available_bytes{namespace="default",pe rsistentvolumeclaim="claim1"} 8.543010816e+09 # TYPE kubelet_volume_stats_capacity_bytes gauge kubelet_volume_stats_capacity_bytes{namespace="default",per sistentvolumeclaim="claim1"} 8.57735168e+09

Heketidb - maintenance

\$ heketi-cli db dump

\$ heket-cli db import(can even be done without heketi daemon running)

\$ heketi-cli db repair

CONTAINER-NATIVE STORAGE BLOCK STORAGE

ENABLES LOGGING/METRICS ON CNS

BEFORE

AFTER

BRICK-MULTIPLEXING

300 MB RAM /Brick

30 MB RAM /Brick

Recommended 8GB RAM baseline + 30MB per brick

Consistent Storage Experience Across The Hybrid Cloud

Application Portability And Lower Costs

Simplify Container Availability

AVAILABILITY ZONE C

Red Hat Ceph Storage

. **RED HAT**° CEPH STORAGE

OpenStack Storage (Cinder/Glance/Swift/Nova/Manila) S3 scale-out Object Storage (AWS Compatible S3) Elastic Data Lake Storage (S3A) Easy tools to ingest data, NFS gateway for RADOS-GW

RED HAT CEPH STORAGE AND OPENSTACK

Which OpenStack Cinder driver are you using?

Red Hat Ceph Storage What's new...

NFS RGW Gateway

- Provides NFS file access on top of RGW object API
- NFS V4 support
- Hosts can mount and access the object namespace using NFS mount
- Files are internally stored as objects inside buckets
- Gateway seamlessly translates between host file semantics and RHCS object semantics.
- No caching of files or data required

ISCSI BLOCK STORAGE

Sending a lifeline to legacy

- Block-level access via industry storage networking standard to storage devices and data on VMware, RHV, native Windows & RHEL
- Backwards compatibility facilitating transition between architectures
- Ceph for backup and recovery ancillary use cases
- ROI benefits from consolidated, unified storage platform
- Complement to NFS for migrating legacy workloads

Red Hat Ceph Storage - now containerized

Deploy Red Hat Ceph enterprise storage in Linux containers

for simplified operations and a smaller hardware footprint. Containerized storage daemons enable users to run Red Hat Ceph Storage on fewer servers by co-locating services that previously required dedicated hardware while avoiding the risk of resource conflicts. Preliminary tests based on a standard Red Hat Ceph Storage cluster configuration showed lowered hardware expenditure by at least 24 percent.

RBD MIRRORING

New daemon 'rbd-mirror' synchronises Ceph images from one cluster to another

- Relies on two new RBD image features:
 - <u>Journaling</u>: enables journaling for every transaction on the image
 - <u>Mirroring</u>: tells the rbd-mirror daemon to replicate images
- Images have states: primary and non-primary (promote and demote calls)

Rados Gateway multisite

Global object storage clusters with a single namespace

- Enables deployment of clusters across multiple geographic locations
- Clusters synchronize, allowing users to read from or write to the closest one

FILE STORAGE with CEPHFS

File services at scale

- Sharing infrastructure with RBD, RGW deployments.
- Very high scale data throughput (RADOS). One of only FS in the world where you can put PB's of data.
- Scale-out metadata performance (multiple metadata data servers).
- OpenStack Manila integration, nfs-ganesha integration (tech-preview)

THE AT-A-GLANCE DASHBOARD

UNDERSTANDING LOAD - "cephmetrics"

er_name	ceph • ISCSI Client All •										≣ Shortcuts
'SI Gate	way Group : ign-2003-01	I-com-redha	t-iscsi-øw ci	enh-øw							
Di Gate	Ga	teways	Clients	ⁱ Sessions	i Defin	d Capacity	LUNs	Unused LUNs			
								2			
		2	1	1	32	GIB	3	2			
	i IOPS	i IOPS ⁱ Throughput		Network Load by Gateway			Prima	Primary LUN Paths Per Gateway			
					10 MB					rh7-gw2 1.0	
					E MD						
	0		C) B	5 MD						
					13:30 13	40 13:50 14:00 14	4:10 14:20				
		11			- rh7-gw1 -	rh7-gw2					
way L	oad										
	al - 1410										
it Loa	u . All	ions hu cli						The second second	the client		
		IOPS by CI	lent			6.0 MB		Throughpt	it by client	r	
						5.0 MB					
					-	2017-09-12 14:23:30	704				
					- iqn-	2017-09-12 14:23:30 1994-05-com-redhat_rh7-clie 2.0 MB	ent: 701				
					- iqn-	2017-09-12 14:23:30 1994-05- com-redhat_rh7-clic 2.0 MB 1.0 MB	ent: 701				
	13:40 13:50) 14	4:00	14:10	- iqn-	2017-09-12 14:23:30 1994-05-com-redhat_rh7-clie 2.0 MB 1.0 MB 0 B 13:30	ent: 701	13:50	14:00	14:10 14:	10
1 30 1994-1)	J 14	4:00	14:10	- iqn-	2017-09-12 14:23:30 1994-05-com-redhat_rh7-clie 2.0 MB 1.0 MB 0 BJJ 13:30 = iqn-1994-05-cc	nt: 701 13:40 m-redhat_rh7-client	13:50	14:00	14:10 14:	10
	13:40 13:50 15-com-redhat_rh7-client IOP5) 14	4:00 for Client 'All'	14:10	- iqn-	2017-09-12 14:23:30 1999-05-0m-redhat_m7-clik 2.0 MB 1.0 MB 0 B 13:30 = iqn-1994-05-cc	nt: 701	13:50 Throughput by RBD	14:00 Image for Clien	14:10 14: t 'All'	10
A 30 n-1994-i	13:40 13:50 15:com-redhat_rh7:client 10P5	5 by RBD Image 1	600 for Client 'All'	14:10	- iqn-	2017.99-12 14:23:30 9994-05-com redhat; h7-clir 2.0 MB 0.8	nt: 701 13:40 m-redhat_rh7-client	13:50 Throughput by RBD	14:00 Image for Clien	14:10 14: t 'All'	
<u>}</u> 30 n-1994-i	13:40 13:50 15:com-redhat_rh7:client IOP5	5 by RBD Image f	5:00 for Client 'All'	14:10	14:20	2017.09-12 14:23:30 994.05-com-redhat_m7-clie 2.0 M8 0.8	nt: 701 13:40 m-redhat_rh7-client	13:50 Throughput by RBD	14:00 Image for Clien	14:10 14: : 'All'	.0
A 30 n-1994-1	13:40 13:50 15:com-redhat_rh7-client IOPS) 14	5:00 for Client 'All'	14:10	14:20	2017.09-12 14:23:30 9994.05-com-redhat_rh7-clie 2.0 MB 1.0 MB 0 B	nt: 701	13:50 Throughput by RBD	14:00 Image for Clien	14:10 14: t 'All'	.0
<u>Л</u> 30 n-1994-i) 13:40 13:50 15:com-redhat_rh7-client IOPS) 14	t:00 for Client 'All'	14:10	14:20	2017-09-12 14-23:30 994 05-com-relation, m7-cile 2.0 MB 1.0 MB 9 M 1.3 MB 9 M 1.3 MB 1.3 MB 1.3 MB 1.3 MB 1.0 MB 3.0 MB 2.0 MB	nt: 701	13:50 Throughput by RBD	14:00 Image for Clien	14:10 14: : 'All'	.0
<u>Л</u> 30 n-1994-i	13:40 13:50 55:com-redhar, m7-client 10P5	5 by RBD Image 1	t:00 for Client 'All'	14:10	1420	2017-09-12 14/23:30 20 MS Concretedus (.110-10 2.0 MS 0.8 = ign-1994.05-cc 6.0 MS 5.0 MS 5.0 MS 3.0 MS 3.0 MS 3.0 MS 3.0 MS 3.0 MS	nt: 701	13:50 Throughput by RBD	14:00	14:10 14: t All'	.0

RHCS Data lake vision – On-demand compute and centralized object storage

Red Hat Ceph Storage integration with OpenStack

Create a volume from an image with a cinder backend.

Capacity Derived IOPs

Values can be scaled (ie multiplied) by volume size for setting dynamic limits.

QoS Spec Key	QoS Spec Value	2 GB Volume	5 GB Volume
Read IOPS / GB	10000	20000 IOPS	50000 IOPS
Write IOPS / GB	5000	10000 IOPS	25000 IOPS

Red Hat Hyperconverged Infrastructure RHHI

·/	<u> </u>
••	00
••	00
••	00
••	00

Traditional Architecture

Converged Infrastructure

Hyper converged Infrastructure

INFRASTRUCTURE CONSOLIDATION & OPERATIONAL EFFICIENCY

- Single budget for compute & storage
- One team to managing infrastructure
- Simplified planning & procurement
- Streamlined deployment & management
- Single support stack for compute and storage
- Maximizing resource utilization

Traditional Architecture

OPTIMIZE, INTEGRATE, MANAGE

MANAGING YOUR RED HAT HYPERCONVERGED INFRASTRUCTURE INSTALLATION

RED HAT VIRTUALIZATION MANAGER

Provides secure web interface (HTTPS) as well as role based access for administration of compute, network, and storage resources.

RED HAT CLOUDFORMS (optional)

Provides orchestration, self-service catalogs, central management for many Red Hat Hyperconverged Infrastructure deployments, chargeback, and policy enforcement.*

*CloudForms is not part of the Red Hat Hyperconverged Infrastructure product or SKU; it is a separate product.

RED HAT VIRTUALIZATION

RED HAT VIRTUALIZATION OVERVIEW

- CENTRALIZED MANAGEMENT for the KVM hypervisor as well as compute, network, and storage resources
- ENTERPRISE FEATURES to support business-critical applications
- CROSS-PORTFOLIO integration, APIs, and SDKs to enable automation
- RED HAT VIRTUALIZATION is built on Red Hat Enterprise Linux+KVM

OVERVIEW OF RED HAT VIRTUALIZATION

KERNEL-BASED VIRTUAL MACHINE (KVM)

libvirt	VDSM	
QEMU		
Guest agent SPICE Guest operating syste	em server	User space
KVI Linux sr	M	Kernal space
	Server hardware	

RED HAT VIRTUALIZATION HOST

LIGHTWEIGHT HOST

- RED HAT VIRTUALIZATION HOST—Purpose built node built on Red Hat Enterprise Linux
- **CAN BE DEPLOYED** via ISO, PXE, USB, cloned
- WRITABLE root file system
- USES TRIMMED-DOWN Anaconda installer
- **COCKPIT** administrative console
- SECURITY AND SERVICES are pretuned to support virtual machines

Red Hat Virtualization Host is designed around LVM Thinpools and "imgbased," resulting in a lightweight and flexible architecture.

RED HAT ENTERPRISE LINUX NODE

FULL HOST

- RED HAT VIRTUALIZATION 4 supports Red Hat Enterprise Linux 7 as a node
- USES QEMU-KVM-Red Hat Virtualization
- LARGER FOOTPRINT as compared to Red Hat Virtualization Host
- RED HAT VIRTUALIZATION MANAGER will configure security and VDSM
- COCKPIT needs to be manually installed and configured

Red Hat Enterprise Linux 7 is fully supported as a host in Red Hat Virtualization. Red Hat Virtualization-related packages and policies are deployed by Red Hat Virtualization Manager.

Basic features

Single point of management for

virtual resources

CPU pinning

RBAC and tiered access

Power management

VM templates

Firewall/SELinux

Support for Red Hat Enterprise Linux and Windows HA virtual machines

Secure Browser based management

RESTful API

Python, Ruby, and Java SDKs

Live migration

Advanced features

Host affinity and anti affinity Migrate and import VMs Automated resource mgmt Load balancing CPU QoS

Hot-add memory and CPU

Resource reservation Overcommit (memory ballooning) Memory page sharing Large-page support Import VMs from VMware

Network features

VLAN tagging

Network QoS

NIC bonding

VM-FEX support

Open virtual network (tech preview)

IPv6 support (guest)

Jumbo frames

Network labels

Storage features

Geo-replication Sharding support Live snapshots and merge Block discard RESTful API for backup/restore 3-way Data Replication Thin and thick provisioning Storage-based fencing

RED HAT HYPERCONVERGED INFRASTRUCTURE ARCHITECTURAL VIEW - POD

RED HAT HYPERCONVERGED INFRASTRUCTURE OR RHV + RHGS?

Red Hat Hyperconverged Infrastructure Documentation https://access.redhat.com/products/red-hat-hyperconverged-infrastructure

All Red Hat Virtualization Documentation <u>https://access.redhat.com/documentation/en/red-hat-virtualization</u>

All Red Hat Gluster Storage Documentation <u>https://access.redhat.com/documentation/en/red-hat-storage</u>

Questions?

THANK YOU

plus.google.com/+RedHat

in linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

